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Abstract Big data has received great attention in research

and application. However, most of the current efforts focus on

system and application to handle the challenges of “volume”

and “velocity”, and not much has been done on the theoreti-

cal foundation and to handle the challenge of “variety”. Based

on metric-space indexing and computationalcomplexity the-

ory, we propose a parallel computing framework for big data.

This framework consists of three components, i.e., universal

representation of big data by abstracting various data types

into metric space, partitioning of big data based on pair-wise

distances in metric space, and parallel computing of big data

with the NC-class computing theory.

Keywords NC-computing, metric space, data partitioning,

parallel computing

1 Introduction

Today, big data is emerging from the network connected

world, as well as conventional grand science and engineer-

ing applications. Further, new technology such as sensor

and communication, and new application such as Internet of

Things and Cloud Computing, also promote the development

of big data. It is now the era of big data focusing on infor-

mation technology research and application. However, most

of the existing research of big data focuses on system tech-

nology and applications [1,2], not much has been done on the

theoretical foundation. Further, among the three basic charac-

teristics or challenges of big data, namely “volume”, “veloc-
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ity” and “variety”, the first two have attracted much attention

while “variety” is relatively less studied.

It is well known that most regular sequential computing

problems are P-class problems, which can be solved in poly-

nomial time on a deterministic Turing machine. However, in

the context of big data, polynomial time is practically unac-

ceptable, and thus P-class problems become intractable. That

is, they are theoretically solvable, but the solving time is so

long that the problems become unsolvable in practice. For ex-

ample, even for a hard disk whose reading speed is as fast as

6GB/second, it still takes more than 5 years just to sequen-

tially scan 1EB data [3].

How to make an intractable problem tractable? In this pa-

per, we propose a simple framework leveraging parallel com-

puting technology. That is, first abstract various data types

into metric space to form a universal representation of data

and to conquer the challenge of “variety”; second divide a

big and complicated problem into a number of small and

tractable sub-problems based on intra-distances of data in

metric space; third solve those sub-problems in parallel using

multiple processors to conquer the challenge of “volume”,

and finally achieve the solution to the original problem. If the

number of sub-problems is polynomial, and can be handled

on PRAM model in polylogarithmic time with polynomial

processors, the computation is the so called Nick’s class com-

puting (NC-computing) [4,5]. The logic relationship among

the three components of this framework can be studied in a

reverse way. Given big data, a natural idea is to handle it in

parallel. Therefore, we propose to use NC-Computing for ap-

plicable cases. To apply NC-Computing, one needs to parti-

tion data. Thus, we study the problem of data partitioning. Fi-

nally, to partition various data types universally, we propose
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to abstract them into metric spaces. Although all the three

components of the proposed framework have been studied

before, to the best of our knowledge, this paper is the first

piece of work combining the three components together to

conquer the “volume” and “variety” challenges of big data.

The rest of this paper is organized as follows: we intro-

duce the universal abstract representation of big data in met-

ric space in Section 2. To impose coordinate system on metric

space for the purpose of partitioning, pivot space iselaborated

in Section 3, followed by partitioning techniques and algo-

rithms in Section 4. A discussion of parallel computing meth-

odsfor big data, especially the NC-computing, is presented in

Section 5. Finally, conclusions are presented in Section 6.

2 Metric space: universal abstract represen-
tation of big data

“Variety” is one of the challenges of big data. That is, data is

of various types and various formats. Generally, there are two

types of solutions to conquer the “variety” challenge. One is

customized solution and the other is universal solution [6].

Customized solutions build one system for each data type.

Since each system is tailored for a particular data type, its

performance can be expected to be high. However, its range

of applicability is relatively narrow, and its price is thus rela-

tively high. As a result, the performance-price ratio will be

relatively low.Universal solutions build a single system to

support a wide range of data types. If the performance is ac-

ceptable, universal system is more cost-effective.

As new data types are emerging rapidly, it is not cost-

effective, or even not affordable, to adopt customized solu-

tions. Universal solutions are of great important to most big

data applications.

To build a universal solution, one usually first adopts a uni-

versal data type serving as an abstraction of a wide range of

data types, and then builds a universal solution based on the

properties of the universal abstraction [6].

As data is getting more and more complex, the relation-

ship among them is usually represented by similarity or dis-

tance. In mathematics, the distance of pairs of elements of

a nonempty set is called a Metric [7]. Therefore, to build a

universal solution, one also needs to find a universal metric

serving as an abstraction of a wide range of metrics.

Metric space provides such a universal data type and a uni-

versal metric. The idea to first abstract various data types into

metric space and then manage and analyze data in metric

space, which is known as Big Data Abstraction [6].

Definition 1 A metric space [7] is a nonempty set S with a

metric, or a distance function, d defined on pairs of elements

of S , with the following properties:

1) For all x, y ∈ S , d(x, y) � 0 , and d(x, y) = 0 if and only

if x = y . (Positivity)

2) For all x, y ∈ S , d(x, y) = d(y, x). (Symmetry)

3) For all x, y, z ∈ S , d(x, y) + d(y, z) � d(x, z). (Triangle

inequality)

Metric space is a very universal data type, and covers a lot

of common data types and their distance functions. Table 1

lists some special cases of metric space.

Table 1 Special cases of metric space

Data type Distance function

Vector Euclidean distance

Vector Manhattan distance

Text Edit distance

Image Hausdroff distance

Protein sequence Global alignment

DNA sequence Hamming distance

Table 1 indicates that many common data types and their

distance functions are special cases of metric space. There-

fore, any solution built for metric space works for those spe-

cial cases.

Metric space only requires a user-defined distance function

satisfying the three metric properties. An interpretation of the

data objects in a coordinate system is not required. That is,

data has no coordinates.

The great universalness of metric space is also its problem.

Since data has no coordinates, many mathematical tools are

not directly applicable, and it is hard to define a criterion to

partition data. In the next section, we show how to impose

coordinates to metric space.

3 Pivot space: impose coordinates to metric
space

To impose coordinates to metric space, one canfirst select a

number of reference points, called pivots [8–10], and then use

the distances from a particular point to the pivots as its coor-

dinates. As a result, the data is mapped from metric space to

a multi-dimensional space, called pivot space.

In this section, we first introduce the concept of pivot space

and how coordinates can be imposed to it, and then present

the concept of complete pivot space and discuss the distortion

of the pair-wise distance of data incurred by the mapping.
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3.1 Pivot space

Let (M, d) be a metric space, where M is the space contain-

ing the data, and d is the distance function, i.e., the metric.

Let S = {xi|xi ∈ M, i = 1, 2, . . . , n}, be the database, n � 1.

S is a finite indexed subset of M. Duplicates are not allowed.

Let P = {p j| j = 1, 2, . . . , k} be a set of pivots. P is a finite

indexed subset of M. Duplicates are not allowed.

The following mapping, FP,d [11], maps a point in S to a

point in the non-negative orthant of Rk, where the jth coordi-

nate of the image represents the distance to p j:

FP,d : M→ Rk : xp ≡ FP,d(x) = ( f1(x), . . . , fk(x))

= (d(x, p1), d(x, p2), . . . , d(x, pk))

We say xp, a k-dimensional vector in Rk, is the image of x.

The pivot space [11] of S is defined as the image set of S

under the mapping FP,d, lying in the non-negative orthant of

Rk. When there is no confusion, pivot space also refers to the

k-dimensional space it lies in.

FP,d(S ) = {xp|xp = FP,d(x) = (d(x, p1), d(x, p2),

. . . , d(x, pk)), x ∈ S }.
Two examples of pivot space are presented next.

Example 1 Let A, B and C be three numbers of values 1, 2

and 3, respectively, and the distance function be the absolute

value of the difference of two numbers. Therefore, these three

numbers and the above distance function form a metric space.

If A is selected as the pivot, then A, B and C are mapped to

0, 1 and 2, respectively. If B is selected as the pivot, then A,

B and C are mapped to 1, 0 and 1, respectively. If C is se-

lected as the pivot, then A, B and C are mapped to 2, 1 and 0,

respectively.

Example 2 Data in this example are the center and the four

corners of the unit square.

A metric space can be formed by these points and the Eu-

clidean distance. Let’s consider two sets of pivots, i.e., {(0,

0), {1, 1}} and {(0, 0), (0, 1)}. Figure 1 shows the original

data and the two pivot spaces deduced from the two sets of

pivots. For each set of pivots, since the number of pivots is 2,

the dimension of the pivot space is 2. Each point from the unit

square is mapped into the 2-dimensional pivot space, with its

distance to the first pivot as the x-coordinate, and its distance

to the second pivot as the y-coordinate. For example, the orig-

inal coordinate of point D is (1, 1). Its Euclidean distance to

(0, 0), the first pivot in both cases, is 1.414. Its Euclidean dis-

tance to (1, 1), the second pivot in Fig. 1(b) is 0, and therefore

its coordinate in the pivot space shown in Fig. 1(b) is (1.414,

0). Similarly, point D’s Euclidean distance to (0, 1), the sec-

ond pivot in Fig. 1(c) is 1, and therefore its coordinate in the

pivot space shown in Fig. 1(c) is (1.414, 1).

Fig. 1 Pivot spaces of the center and four corners of the unit square with
Euclidean distance. (a) Original data; (b) pivots (0,0) and (1,1); (c) pivots
(0,0) and (0,1)

With the mapping to pivot space, data in metric space is im-

posed with coordinates. Unfortunately, this mapping is usu-

ally distorted. That is, distance between two points in the met-

ric space usually does not equal to the distance between the

two points in the pivot space. For example, the distance be-

tween point A and point D is 1 in the original metric space

(Fig. 1(a)). In the pivot space shown in Fig. 1(b), the coordi-
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nates of point A and D are (1, 1) and (1.414, 0), respectively,

and their Euclidean distance is 1.37.

The complete pivot space is introduced next to handle this

problem.

3.2 Complete pivot space

The complete pivot space of S , FS ,d(S ), is the pivot space of

S when all points in S are selected as pivots [11].

Example 3 shows the complete pivot space of the three

points discussed in Example 1.

Example 3 Let A, B and C be three numbers of values 1, 2

and 3, respectively, and the distance function be the absolute

value of the difference of two numbers. Therefore, the com-

plete pivot space is 3-dimensional. The coordinates of A, B

and C, as plotted in Fig. 2, are (0, 1, 2), (1, 0, 1) and (2, 1, 0),

respectively.

Fig. 2 The complete pivot space of three numbers, A, B and C of values 1,
2 and 3

Given two vectors A = (a1, a2, . . . , an) and B =

(b1, b2, . . . , bn), the infinity distance, L∞, between A and B

is defined as:

L∞(A,B) = max{|ai − bi|, i = 1, 2, . . . , n}.

It has been shown that the mapping from a metric space

to its complete pivot space has no distortion with respect to

the infinity distance in the complete pivot space [11]. That is,

give metric space (M, d), for any two point x and y in S , the

following holds:

d(x, y) = L∞(FS ,d(x), FS ,d(y)).

As a result, the data set S from any general metric space

can be mapped without distortion into the complete pivot

space with respect to the L∞ distance without loss of any dis-

tance information. Instead of working on S in a black-box

metric space without any domain information, it is equiva-

lent to work on the complete pivot space of S in the much

more perceptible vector space Rn with the L∞ distance.

Please note that when Euclidean distance in the pivot space

is considered, distortion is still produced, as discussed next.

3.3 Distortion with respect to Euclidean distance

We now consider the distortion of the mapping from the met-

ric space to the pivot space when Euclidean distance, L2, is

used. Theorem 1 characterizes the distortion of the incom-

plete pivot space.

Theorem 1 Let (M, d) be a metric space. Let P = {p j| j =
1, 2, . . . , k} be the set of pivots, and for x, y ∈ M, let xp =

FP,d(x) and yp = FP,d(y). Then, 0 � L2(xp, yp) �
√

kd(x, y).

Moreover, L2(xp, yp) = 0 when d(x, pi) = d(y, pi) for all

i = 1, 2, . . . , k.

Proof Since

xp = [d(x, p1), d(x, p2), . . . , d(x, pk)],

yp = [d(y, p1), d(y, p2), . . . , d(y, pk)],

then,

L2(xp, yp) =

√
√
√

k
∑

i=1

|d(x, pi) − d(y, pi)|2

�

√
√
√

k
∑

i=1

|d(x, y)|2 = √kd(x, y).

Clearly L2(xp, yp) � 0, and L2(xp, yp) = 0 when d(x, pi) =

d(y, pi) for all i = 1, 2, . . . , k. �

Theorem 2 describes the distortion with respect to the com-

plete pivot space.

Theorem 2 Let x, y ∈ S , xp = FS ,d(x), and yp = FS ,d(y).

Then, in the complete pivot space
√

2dx, y � L2(xp, yp) �√
nd(x, y), and

√
2d(x, y) = L2(xp, yp) when d(x, xi) = d(y, xi)

for all i = 1, 2, . . . , n, i � t, i � l.

Proof Since

xp = FS ,d(x) = [d(x, x1), d(x, x2), . . . , d(x, xn)],

yp = FS ,d(y) = [d(y, x1), d(y, x2), . . . , d(y, xn)],

L2(xp, yp) �
√

nd(x, y) follows from Theorem 1.

Since x, y � S , we ignore the trivial case that x = y and let

xt = x and xl = y. Then



612 Front. Comput. Sci., 2017, 11(4): 608–621

L2(xp, yp) =

√
√

n
∑

i=1

|d(x, xi) − d(y, xi)|2 =
√
√ n
∑

i=1,i�t,l

|d(x, xi) − d(y, xi)|2 + |d(x, xt) − d(y, xt)|2 + |d(x, xl) − d(y, xl)|2

=

√
√ n
∑

i=1,i�t,l

|d(x, xi) − d(y, xi)|2 + |d(x, x) − d(y, x)|2 + |d(x, y) − d(y, y)|2 =
√
√ n
∑

i=1,i�t,l

|d(x, xi) − d(y, xi)|2 + 2d(x, y)2

�
√

2d(x, y)

Moreover, equality clearly holds when d(x, xi) = d(y, xi)

for all i = 1, 2, . . . , n, i � t, l. �

4 Distance: the principle of big data parti-
tioning

As a very common step of many data processing tasks and for

the sake of parallel computing for big data, data partitioning

should be studied for metric space. Basically, there are two

types of partitioning for metric space. Canonical partitioning

methods in parallel computing, which are also applicable to

metric spaces, distribute data to multiple processors without

considering their relationship or distances to each other [4].

On the other hand, distance-based partitioning divides data

into partitions where all data in a partition form certain shape

with respect to distance [8,9]. A common example of such

shape is a ring, i.e., all data in a partition is within a range of

distance to a pivot.

This section gives a comprehensive survey of existing par-

titioning methods for metric space. Canonical partitioning

methods in parallel computing are first surveyed in Section

4.1. Then, existing distance-based partitioning methods are

surveyed from two aspects, i.e., shapes of partitions (Section

4.2) and common partitioning algorithms (Section 4.3).

4.1 Canonical partitioning methods in parallel computing

A basic idea of parallel computing is divide-and-conquer. To

do so, one should first divide the data, and distribute them

to multiple processors for parallel processing. In terms of the

number of data objects in partitions, canonical partitioning

methods include uniform partitioning, square root partition-

ing, logarithmic partitioning and functional partitioning [4].

4.1.1 Uniform partitioning

For n data points and p identical processors, the goal of

uniform partitioning is to achieve load balance. To do so,

it divides the n data points into p segments evenly, where

each of the segment consists of �n/p	 or 
n/p� data points

(Fig. 3). Since the processors are identical, they can finish

the processing of segments simultaneously, and therefore the

load balance is achieved. For example, the parallel sorting

by regular sampling (PSRS) algorithm [12] employs uniform

partitioning and achieves linear speedup.

Fig. 3 Uniform partitioning

4.1.2 Square root partitioning

In parallel computing, if the number of processors is too

large, the large number of fine grained subtasks leads to huge

cost for subtask creation and large cost of communication

among subtasks. On the contrary, if the number of proces-

sors is too small, the parallelism is not fully exploited. It is

necessary to determine an “optimal” number of processors.

Square root partitioning is a special case of uniform parti-

tioning. For n data points, square root partitioning takes use

of
√

n processors. It divides data into
√

n segments, each of

which consists of
√

n data points (Fig. 4). For example, the

Valiant’ Merging Algorithm [13] employs square root parti-

tioning. With n processors, it merges two ordered sequences

of size n in O(log log n) time.

Fig. 4 Square root partitioning

4.1.3 Logarithmic partitioning

Logarithmic partitioning is another special case of uniform

partitioning. For n data points, logarithmic partitioning di-

vides the data into n/ log n segments, each of which consists

of log n data points (Fig. 5). For example, Shiloach’s merge

algorithm employs logarithmic partition [14].
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Fig. 5 Logarithmic partitioning

4.1.4 Functional partitioning

Usually, the size of segment to divide data should be deter-

mined according to the functionality of particular applica-

tions, case by case. For example, the (m, n)-selection problem

selects first m smallest values from n data points. A functional

partitioning strategy for this problem is to divide n data points

into segments of size m, and then make pair-wise comparison

of segments in parallel to get the answer [15].

4.2 The shapes of distance-based partitions

Those canonical partitioning methods in parallel computing

discussed above do not consider the distances among data.

For some data processing tasks, such as indexing and cluster-

ing, usually an order should be imposed on partitions, or par-

titions should be distinguishable from each other spatially. As

a result, for these data processing tasks in metric space, data

should be partitioned based on their distances to each other.

In distance-based partitioning, usually partitions are of cer-

tain shapes with parameters. For example, a common shape

is a ring such that all points in a partition is within a dis-

tance range to a pivot. The lower and upper bounds of the

range are the parameters to the shape. In the following, the

shapes are surveyed in Section 4.2.1 and their unification in

Section 4.2.2. The algorithms to determine the parameters to

the shapes are discussed in Section 4.3.

4.2.1 Survey of partitioning shapes

In terms of shape, there are at least two types of partitioning,

i.e., ball partitioning and hyper-plane partitioning [8,9,16,17].

We show the shapes of these partitioning in metric space and

pivot space [11] in the following.

4.2.1.1 Ball partitioning

Intuitively, ball partitioning uses balls with the same center

and various radii to partition data. The primitive form of ball

partitioning was proposed in the work of vantage point tree

(VPT) [18,19].

Given n points, with a vantage point (or pivot), VP, pre-

determined, the distances from VP to points are calculated

and the median, m, of the distances is obtained. Then the data

is partitioned by a ball centered at VP with m as its radius.

That is, VPT partitioning is a balanced binary partitioning,

and points whose distances to VP are equal to or less than m

go to one partition, while points whose distances to VP are

larger than m go to the other partition (Fig. 6).

Fig. 6 VPT partitioning in the metric space

Obviously, the time complexity of one run of VPT parti-

tioning is O(n). In constructing a VPT, VPT partitioning exe-

cutes recursively. Consequently, the overall time complexity

of partitioning in the construction of a VPT is O(n log n).

Mao et al. proposed to analyze metric-space partitioning

in pivot space, a multi-dimensional space whose coordinates

are distances to each pivot, respectively [20]. VPT parti-

tioning in pivot space is illustrated in Fig. 7. Since there is

only one pivot, the pivot space of the VPT partitioning is 1-

dimensional, and the partition boundary changes from a ball

in the original metric space to the point of value m.

Fig. 7 VPT partitioning in the pivot space

Multiple vantage point tree (MVPT) [21], an extension of

VPT, takes use of multiple vantage points and multiple radii

for each vantage point, respectively. MVPT partitioning of

two vantage points and two radii for each vantage point is il-

lustrated for the cases of metric space and pivot space in Figs.

8 and 9, respectively. It can be seen that the partition bound-

ary of MVPT partitioning changes from balls in the original

metric space to straight lines in 2-dimensional pivot space.

Fig. 8 MVPT partitioning in the metric space

Similarly, MVPT partitioning executes recursively to con-

struct an MVPT. Obviously, if the partitioning is balanced,
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the time complexity of one run of MVPT partitioning is O(n),

and the overall time complexity of partitioning in the con-

struction of an MVPT is O(n log n).

Fig. 9 MVPT partitioning in the pivot space

4.2.1.2 Hyper-plane partitioning

Intuitively, hyper-plane partitioninguses hyper-planes to par-

tition data. The primitive form of hyper-plane partition-

ing was proposed in the work of general hyper-plane tree

(GHT) [18].

Given n points, with two centers (or pivots), C1 and C2,

predetermined, GHT partitioning uses a hyper-plane equal-

distant to C1 and C2 to divide the data into two partitions.

That is, points closer to C1 or equal-distant to C1 and C2 go

to one partition, while points closer to C2 go to the other par-

tition (Fig. 10) [20].

Fig. 10 GHT partitioning in the metric space

Obviously, the time complexity of one run of GHT parti-

tioning is O(n). GHT partitioning executes recursively to con-

struct a GHT. It should be noted that GHT partitioning is not

guaranteed to be balanced. The overall time complexity of

partitioning in the construction of a GHT is O(n log n) in the

best case when every partitioning is balanced, and O(n2) in

the worst case.

GHT partitioning in the pivot space is illustrated in Fig. 11.

The partition boundary is a straight line passing the origin of

slope 1, which can be defined by:

d(C1, x) − d(C2, x) = 0

In addition to GHT, GNAT [22], M-Tree [23], SA-

tree [24], and i-distance [25] all employ hyper-plane parti-

tioning.

Complete general hyper-plane tree (CGHT) [20], an ex-

tension of GHT, takes full use of the values of d(C1, x) and

d(C2, x), or d(C1, x) − d(C2, x) and d(C1, x) + d(C2, x), pre-

cisely, in partitioning the data. For a constant T, the curve

defined by d(C1, x) − d(C2, x) = T is a hyperbola in the met-

ric space and a straight line of slope 1 in the pivot space. The

curve defined by d(C1, x) + d(C2, x) = T is an ellipse in the

metric space and a straight line of slope −1 in the pivot space.

Fig. 11 GHT partitioning in the pivot space

CGHT partitioning with two hyperbolas and two ellipses

for the cases of metric space and pivot space is illustrated in

Figs. 12 [20] and 13 [20], respectively.

Fig. 12 CGHT partitioning in the metric space [20]

Fig. 13 CGHT partitioning in the pivot space [20]

Similarly, CGHT partitioning executes recursively to con-

struct a CGHT. The time complexity of one run of CGHT par-

titioning is O(n). CGHT partitioning is not guaranteed to be
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balanced. The overall time complexity of partitioning in the

construction of a CGHT is O(n log n) in the best case when

every partitioning are balanced, and O(n2) in the worst case.

4.2.2 Unification of shapes of partitions

Mao et al. studied the relationship between ball partitioning

and hyper-plane partitioning [20]. They first unified the two

kinds of partitioning, and then compared their performance.

4.2.2.1 Unification of ball and hyper-plane partitioning

The partition boundaries of both partitioning in the original

metric space, i.e., ball and hyper-plane (Figs. 6 and 10), are

quite different from each other. However, if the pivot space

case is considered (Figs. 7 and 11), and if the partition bound-

ary in Fig. 11 be considered as a line x = m, one can easily

see that the only difference between the two partition lines

in Figs. 7 and 11 is the slope. That is, ball partitioning and

hyper-plane partitioning are just rotations of each other.

Next, let’s compare MVPT and CGHT, of which the num-

bers of pivots are both 2, and the numbers of partitions are

both 9. Similarly, in the original metric, the partition bound-

aries, i.e., balls (Fig. 8) and hyperbolas or ellipses (Fig. 12),

are quite different from each other. However, in the pivot

space (Figs. 9 and 13), one can again easily see that the par-

tition boundaries are rotations of each other.

Similar conclusion can be drawn for the case of more piv-

ots.

As a result, ball partitioning and hyper-plane partitioning

are unified so that they are both special cases of linear (to

avoid confusion, the word “hyper-plane” is not used) parti-

tioning in the pivot space. The linear partition boundaries of

ball partitioning are perpendicular to axes, while the linear

partition boundaries of hyper-plane partitioning are equal-

distant to axes.

4.2.2.2 Performance analysis

Next, what is the optimal value of slop among all possible

linear partitions in the pivot space?

Although there is no general answer for all cases, Mao et

al. gave a partial answer for the case of similarity indexing

for range query [20].

The performance metric is the average number of distance

calculations, which is independent from implementation de-

tails and machine environment, to answer range queries. Mao

et al. proposed the r-neighborhood analysis approach [20] to

analyze the query performance.

Informally, r-neighborhood is the neighborhood of parti-

tion boundary. If a query object falls into the r-neighborhood,

both sides of the boundary have to be further accessed with-

out making any pruning [20]. Mao et al. show that the number

of points in the r-neighborhood is a good indicator of query

performance, given the assumption that the queries have the

same distribution as the database [20]. Less number of points

in the r-neighborhood indicates better query performance.

The following four results are shown in [20]:

1) In the pivot space, among all the slopes, VPT partition-

ing possesses the minimal width of the r-neighborhood,

while GHT partitioning possesses the maximal one.

2) For 2-dimensional normally distributed data in the pivot

space, the number of points in the r-neighborhood of

VPT partitioning is less than that of GHT partitioning.

3) For a comprehensive test suite experimentally, MVPT

has less number of points in the r-neighborhood than

that of CGHT.

4) For a comprehensive test suite experimentally, MVPT

outperforms CGHT in range query performance.

In summary, Mao et al.’s results indicate that ball partition-

ing potentially outperforms hyper-plane partitioning, at least

for similarity indexing. Consequently, since hyper-plane par-

titioning is a rotation of ball partitioning, dimension rotation,

an effective technique in multi-dimensional data processing,

might not be as effective in metric space.

4.3 Distance-based partitioning algorithms

Given the unification of partitioning methods above, the par-

titioning problem can be formalized as follows: for n data

points, k pivots, and fanout m for each pivot, recursively di-

vide data into f partitions for each pivot so that the total num-

ber of partitions is f k. In this section, common distance-based

partitioning algorithms are surveyed.

4.3.1 Random partitioning

Random partitioning selects random split values to split data.

Its algorithmic steps are show in Fig. 14.

4.3.2 Balanced partitioning

There are two meanings of “balance” in the context of par-

titioning. One meaning is identical to that of the traditional

balanced partitioning in that the numbers of points in parti-

tions are the same or almost the same. We call it “cardinality-

balanced” partitioning. An example is the VPT partitioning

[18,19].
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Fig. 14 The algorithmic steps of random partitioning

The second meaning is that the ranges of data in partitions

are the same, which is called “distance-balanced” partition-

ing [8]. It should be noted that cardinality-balanced partitions

may not be balanced in space, vice versa. In this partitioning,

the range of the distance function is partitioned into k equal

size intervals, independent of the cardinality of the partitions.

The time to build the tree is very fast, as the consideration

of the actual data is minimal. This construction also leads to

unbalanced trees, but without the benefits of considering the

actual data distribution. The cardinality-balanced partitioning

(original form of VPT partitioning) and the distance-balanced

partitioning of VPT are illustrated in Fig. 15 [8].

Fig. 15 The (a) cardinality- and (b) distance-balanced partitioning of VPT

The algorithmic steps of cardinality- and distance-

balanced partitioning are shown in Figs. 16 and 17, respec-

tively. The only difference is the generation of the split val-

ues. Cardinality-balanced partitioning uses percentiles as the

split values, while distance-balanced partitioning just evenly

divides the range of the data.

Fig. 16 The algorithmic steps of cardinality-balanced partitioning

4.3.3 Balanced vs. unbalanced partitioning

All the partitioning methods discussed so far aim to be bal-

anced, in cardinality or space. In construction of search trees,

a principle is to make the tree balanced with respect to car-

dinality. The reason is that answering an exact match search

essentially descends a path from the root to a leaf. If the tree

is balanced, the average height of tree, which is proportional

to the cost of search, is minimized.

Fig. 17 The algorithmic steps of distance-balanced partitioning

However, for similarity indexing, multiple paths from the

root to leaves could be descended to answer a similarity

query. Therefore, in addition to the balance of the index

tree, the number of paths descended is another important

factor of query performance. Brin argued that the effective-

ness of a metric-space index depends on the algorithm’s

ability to capture the intrinsic hierarchical structure of the

data [22]. Chavez and Navarro showed that unbalancing

could be helpful to improve query performance [26]. Fur-

ther, as discussed by Mao et al. [20], the number of points in

the r-neighborhood is a good indicator of query performance.

Therefore, in the construction of the index tree, it is usually

beneficial to place the partition boundaries in sparse regions

of data. Following this idea, the clustering partitioning was

proposed in [27].

4.3.4 Clustering partitioning

Clustering partitioning [27] aims at finding the intrinsic clus-

tering of data and placing the partition boundaries in the

sparse region in between the intrinsic clusters. In addition,

clustering partitioning tries to achieve as much balance as

possible.

The algorithm runs for pivots one by one. For a pivot p,

the data to cluster is d(p, x). Therefore, any clustering al-

gorithm applicable to numbers, such as K-means [28] and

DBSCAN [29] can be employed. If K-means is to be

employed, the initial clustering can be determined by

cardinality-balanced partitioning.

The algorithm achieves balance by determining the pivot

leading to the most balanced partitioning from a set of avail-

able pivots, where the balance of a partitioning is measured

by the variance of the sizes of partitions, the smaller the more

balanced. The clustering partitioning algorithm is shown in
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Fig. 18.

Fig. 18 The clustering partitioning algorithm

4.3.5 Time and space complexity

Obviously, the time complexities of one run of random and

balanced partitioning are both O(n). Their overall time com-

plexities of recursive partitioning are both O(n log n). Their

space complexities are both O(1).

For clustering partitioning, if we assume the time com-

plexity of the clustering algorithm is no more than O(n) and

space complexity is no more than O(1), the time and space

complexities of clustering partitioning are same as other par-

titioning algorithms discussed above.

5 Parallel computing: the key to make in-
tractable big data problems tractable

Now that big data is partitioned into small subsets, parallel

computing can be applied to solve big data problems. In this

section, we start with a discussion of P-class problems and

their tractability in the context of big data, then elaborate

what kind of big data problems can be considered tractable,

and finally introduce the NC-computing and its possible ap-

plication to big data problems.

5.1 P-class problem and its tractability

In traditional computational complexity theory, problems are

often divided into P-class problems, NP-class problems,

NPC-class problems and so on according the difficulty, or

the required time to solve them.Among them, P-class prob-

lems are defined as the class of problems that are solvable in

polynomial time, namely in O(nk) time, where k is a constant

and n is the input size. Many common problems belong to

P-class problems.

In traditional cases, the input sizes of problems are rela-

tively small. If a problem can be solved in polynomial time,

it is considered to be quickly solvable, and otherwise not.

Therefore, P-class problems are tractable problems, and other

problems are intractable problems. But in case of big data, the

input sizes of problems may be very large. Even if they have

linear or quadratic time complexities, their solving processes

become very slow. Therefore, at this time P-class problems

can no longer be deemed as tractable [3].

At present, parallel computing has been widely developed

and applied. When the time complexity of the best algorithm

for a problem is close to or reach its theoretical lower bound,

it is difficult or impossible to reduce the computation time. In

this case, parallel computing is possibly the only way to ef-

fectively shorten the computation time while ensuring exact

solution. In case of big data, to quickly solve a problem with

large input size, we can resort to parallel computing. How-

ever, due to the limitation of the number of available proces-

sors and the nature of the problems, not all problems can be

quickly solved by parallel computing.

Assume that a problem K has a parallel algorithm A, the

number of processors to run algorithm A is P(n), the running

time of algorithm A is T (n), and the total workload of algo-

rithm A is W(n). It is straightforward that P(n) · T (n) � W(n)

and algorithm A can be simulated on a serial computer in

W(n) time. Obviously, if K is not a P-class problem, then

W(n) must not be polynomial. Due to the hardware limitation

of parallel computer, P(n) cannot be greater than polynomial.

Thus, T (n) must not be polynomial, either. In other words, for

a problem that is not P-class problem, even if it is solved on

a parallel computer, its time complexity cannot be improved

to polynomial. Therefore, in case of big data, we only study

whether P-class problems can be quickly solved on a parallel

computer.

5.2 Big data tractable problem

In the case of big data, if a problem can be quickly solved

with appropriate number of processors, then we consider it

tractable. Polynomial time is usually not acceptable for big

data. Therefore, we want a problem can be solved in lower

than polynomial time. A time complexity lower than poly-

nomial is usually polylogarithmic, which is O(logk n), where

k is a constant and n is the input size. For any nonnegative

constant ε, there is logk n = o(nε). Sublinear complexity is

O(nk), where 0 < k < 1. Under certain conditions, sublin-
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ear time may be faster than polylogarithmic time, e.g., when

n < 0.5 × 109, n0.5 < log3 n.

Accordingly, we can give a quantitative description of big

data tractable problem. The so-called “quickly solved” refers

to that the running time is polylogarithmic, namely O(logk n).

The so-called “appropriate number of processors” refers to

that the number of processors is polynomial, which is lin-

ear or nearly linear in practice. Therefore, in the case of big

data, if a problem can be solved with polynomial number

of processors in polylogarithmic time, it is called a big data

tractable problem, and otherwise a big data intractable prob-

lem.

In the above definition, we adopt polylogarithmic time

rather than sublinear time based on the following three fac-

tors: 1) Only a small number of problems have sublinear

time complexity, while relatively more problems have poly-

logarithmic time complexity, especially in parallel comput-

ing. 2) For many parallel computing models, if a problem

can be solved on a model in polylogarithmic time, it is likely

that it can be solved on another model in polylogarithmic

time. However, it is not true for sublinear time. 3) The class

of problems with polylogarithmic time complexity has good

closeness. It is because that polylogarithmic is closed under

addition, multiplication and composition operations. For ex-

ample, if the output of an algorithm with polylogarithmic

time is fed as the input of an algorithm with polylogarith-

mic time, the obtained combinatorial algorithm is also poly-

logarithmic. Moreover, if an algorithm with polylogarithmic

time calls a subroutine with polylogarithmic time for constant

times, the obtained combinatorial algorithm is also polyloga-

rithmic.

5.3 NC-computing

In parallel complexity theory, an NC algorithm is defined

as a parallel algorithm that runs on a PRAM machine with

polynomial number of processors in polylogarithmic time. A

problem that has an NC algorithm is called as a Nick’s Class

problem (NC problem) [5]. An algorithm on any sub-PRAM

model is still an NC algorithm no matter what sub-model of

PRAM is considered, e.g., PRAM-EREW, PRAM-CREW, or

PRAM-CRCW. More generally, NC algorithm is also robust

with respect to any other accepted models of parallel com-

putation (Boolean circuit model, LogP [30], Parallel memory

hierarchy model [31], etc.).

According to the above definition of big data tractable

problem, big data tractable problems can be considered

equivalent to NC problems. Fortunately, many common prob-

lems belong to NC problems, e.g., operation of several in-

tegers, prefix and scan computation, selection and sorting,

matrix operations (multiplication, rank, inverse, rank, etc.),

linear equations group, tree contraction and expression eval-

uation, Euler tour technique and derived problems, connected

components of graphs, maximal match of graph, many prob-

lems in computational geometry, string matching, and so on.

Even in case of big data, we can quickly solve these prob-

lems on a parallel computer. Many NC algorithms have been

proved to be optimal. For example, parallel scan algorithm

has T (n) = O(log n), P(n) = n/ log n and W(n) = O(n). Some

cost optimal NC algorithms are superfast. For example, par-

allel string matching algorithm has T (n) = O(log log n) and

P(n) = n/ log n.

Given two problems K1 and K2, if there exists an NC al-

gorithm that can translate problem K1 to problem K2, it is

called that K1 can be NC-reducible to K2. The relation of

NC-reduction satisfies reflexivity and transitivity. We can use

the relation of NC-reduction to indirectly judge whether a

problem belongs to NC problems. That is, if problem K2 be-

longs to NC problems and problem K1 can be NC- reducible

toproblem K2, problem K1 also belongs to NC problems and

problem K1 can be indirectly solved by the NC algorithm of

problem K2. On the other hand, if problem K1 does not be-

long to NC problems and problem K1 is NC-reducible toprob-

lem K2, problem K2 also does not belong to NC problems.

However, not all P-class problems have NC algorithms.

Many problems, if they are inherently serial or due to ad-

ditional cost caused by communication and synchronization,

cannot be solved in polylogarithmic time. Among P-class

problems, there exist a class of problems called P-complete

problems. In 1975, Ladner showed that the circuit value prob-

lem (CVP) was P-complete [32]. Further examples include

some graph problems (maximal independent set, depth-first

search, maximum clique, etc.), and some combinatorial op-

timization problem (linear inequalities, linear programming,

etc.) Any P-class problem can be NC-reducible to any P-

complete problem. Nick Pippenger is believed to be the first

to study the class of problems requiring polylogarithmic time

and polynomial size circuits [33]. Therefore, Cook named

this class of problems “Nick’s Class” or NC for short [5].

A lot of works have been done to propose NC algorithms for

various polynomial time sequential algorithms.

Chandra and Stockmeyer’s work [34] and Goldschlager’s

dissertation [35] are believed to be the first to study the re-

lationship between P-complete problems and problems that

are unlikely to parallelize. P-complete problems are a class

of problems that are most difficult to be parallelized. Today,
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it is generally conjectured but not proved that P � NC. That

is, all P-complete problems do not have NC algorithm and

they all belong to big data intractable problems.

5.4 NC-computing of big data

In case of big data, high order polylogarithmic time may be

still slow. We can make further division for NC problems by

limiting the order of polylogarithmic. Let NCi problems be

the class of problems that can be solved in O(logi n) time

on a parallel machine with polynomial number of proces-

sors. According to the above definition, NC = NC0 ∪ NC1 ∪
NC2 ∪ · · · ∪ NCi ∪ · · · . Obviously, NCi problems also sat-

isfy the following hierarchy relation: NC0 ⊆ NC1 ⊆ NC2 ⊆
· · ·NCi ⊆ · · · ⊆ NC. Let EREWi, CREWi, CRCWi be the

classes of problems that can be solved in O(logi n) time on the

parallel computing model of PRAM-EREW, PRAM-CREW,

PRAM-CRCW with polynomial number of processors, re-

spectively. Then, their relation with NCi problems is

NCi ⊆ EREWi ⊆ CREWi ⊆ CRCWi ⊆ NCi+1, i � 0.

On PRAM model, one can first divide a big data set D into

polynomial number of subsets Dm, m = 1, 2, . . ., and then par-

allel processes each Dm in polylogarithmic time. If the above

process is proved to be feasible, this computing is defined as

NC-computing of big data. Further, if all Dm can be solved

in polylogarithmic time of order i, this computing is defined

as NCi computing of big data. Generally speaking, in case

of small data, NC-computing can be used to solve moder-

ately sized problems (e.g., hundreds of thousands of input

items) with moderate order polynomial number of processors

in low order polylogarithmic time. In case of big data, NC-

computing can be used to solve largely sized problems (e.g.,

millions of input items) with low order polynomial number

of processors in moderate order polylogarithmic time.

At last, we demonstrate the progress of NC-computing of

big data by a simple ranking problem. Given two arrays A

and B whose length are both n, where array A is ordered and

array B is unordered,the problem is to compute the rank of

each element of array B in array A. In serial computing, for

each element of array B, we can obtain its rank in array A

by binary search in O(log n) time, so the total running time is

O(n log n). In the case of big data, n may be very large and

then the running time of O(n log n) is no longer acceptable.

Therefore, parallel method must be used. When n processors

are used, each processor can compute the rank of an element

of array B in parallel. Ranks of all element of array B can be

obtained in O(log n) time, so this is NC1 computing of big

data. When n2 processors are used, each processor can com-

pare an element of array B and an element of array A. Ranks

of all elements of array B can be obtained in O(1) time. There-

fore, this is NC0 computing of big data.

6 Conclusion

In this paper, the problem under consideration is that poly-

nomial time problems which are theoretically tractable and

practically not tractable in the context of big data. Neverthe-

less, these problems usually involve various data types. We

propose a universal parallel processing paradigm to make

these problems, if they are parallelizable. That is, first, find

a universal abstraction for various data types. We propose

to use metric space as the universal abstraction for big data

in this paper. Second, partition a big data problem into small

sub-problems. A number of data partitioning methods in met-

ric space are surveyed. Last, the sub-problems can be handled

in parallel. We propose to use NC-computing for these sub-

problems if appropriate. With this framework, uses only need

to define distance functions for their own data types. After

plugging the data into the framework, data will be abstracted

into metric spaces, partitioned, and processed in parallel. In

conclusion, we try to lay down the foundation of parallel

computing theory for big data.
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