
The Edge Weight Computation with
MapReduce for Extracting Weighted Graphs

Yuhong Feng, Junpeng Wang, Zhiqiang Zhang, Haoming Zhong, Zhong Ming, Xuan Yang, and Rui Mao

Abstract—Automated weighted graph construction from massive data is essential to weighted graph theory based data mining

processes, where the edge weight computation is time consuming or even fails to complete on a single machine when necessary

resources are exhausted. In addition, existing work lacks of the measurement on the accuracy of the edge weights, which represents

the graph accuracy and affects the following data mining results. This paper describes the classification, implementation and

evaluation of edge weight computation algorithms with MapReduce Framework, which is a powerful parallel and distributed processing

model. First, a classification of the edge weight computation algorithms is developed and how they can be applied on MapReduce is

also discussed. Then we propose comprehensive measurements on the edge weight accuracy in terms of the number of edges,

strength distribution, community structure, Hop-plot and effective diameters. Finally, a performance study has been conducted to

evaluate these algorithms in terms of memory and disk usage, execution time and accuracy using a real massive social network

application dataset. The results are presented and discussed. Our comparison results can help find out the most effective parallel and

distributed edge weight computation algorithm for constructing a weighted graph for a given massive dataset.

Index Terms—Weighted graph extraction, edge weight computation, similarity measurement, MapReduce, massive data analysis

Ç

1 INTRODUCTION

RECENT years have witnessed the rapid growth of appli-
cation data and mining such data provides various

desirable services benefiting our life in many ways. Many
data mining methods are based on graph theory and graphs
need to be constructed before they can be applied.

Graph construction for a given dataset includes graph
extraction, transform, and load (ETL). Graph construction
for massive data is a time-consuming and complicated task:
(i) The raw application data grows exponentially; (ii) The
number of entities and their features hidden in the raw data
range from numbers to tens of thousands, meaning that
multiple different topological graphs can be constructed
from a particular dataset; and (iii) The management of
graph construction workflow needs extensive computa-
tional domain knowledge, e.g., effective resource utiliza-
tion, load balancing, and accurate graph delivering. This
handicaps the data scientists from actual data analysis. In
order to offload the complexities of graph construction from
data scientist and help them focus on data analysis, a scal-
able framework Graphbuilder [1] using MapReduce [2] is
recently open sourced, where MapReduce is a powerful

parallel and distributed processing model for large scale
data intensive applications. Graphbuilder provides a set of
tools for automatically constructing graphs from raw data
for various applications and it demonstrates its remarkable
effectiveness on graph compression and partition, reducing
memory consumption and achieving load balancing across
the computational resources.

For the time being, there are no edge weights in the
graphs extracted by Graphbuilder. A weighted graph con-
sists of not only nodes and edges, but also edge weights,
which measure the degree of the similarity between nodes
and represent the closeness of the nodes’ connections. Quite
some widely used graph based data mining methods such
as clustering [3] and collaborative filtering [4] are actually
based on weighted graphs. In order to narrow down the
research gap, our objective is to design algorithms for effec-
tive edge weight computation. The edge weight computa-
tion, i.e. the similarity measurement between nodes, over
massive datasets is time consuming. How to parallel and
scale up their computation on a single machine has been
well reported in [5]. Massive data nowadays are often char-
acteristic of high volume, high dimension and high distribution,
which presents great challenges to the edge weight compu-
tation on a single host. MapReduce framework decomposes
computing tasks into smaller ones and distributes them to
execute on multiple distributed hosts simultaneously,
which improves their efficiency and scalability.

Therefore, this paper describes the classification, imple-
mentation and evaluation of edge weight computation algo-
rithms with MapReduce. First, to put the discussion into
perspective, what graphs can be extracted from a given data
is presented. Second, a classification of existing edge weight
computation algorithms is developed and how they can
be applied on MapReduce is also discussed. Third, we
propose comprehensive measurements on the edge weight

� Y. Feng, J. Wang, Z. Ming, X. Yang and R. Mao are with the College of
Computer Science and Software Engineering and the Guangdong Province
Key Laboratory of Popular High Performance Computers, Shenzhen
University, Shenzhen 518060, China. E-mail: {yuhongf, mingz, mao}
@szu.edu.cn, wjp_2013@126.com, xyang0520@263.net.

� Z. Zhang is with the Department of Research and Development,
Beansmile, Guangzhou, China. E-mail: padmazero@gmail.com.

� H. Zhong is with the Big Data Center, WeBank, Shenzhen, China.
E-mail: zhonghm@gmail.com.

Manuscript received 31 Jan. 2015; revised 6 Nov. 2015; accepted 14 Feb. 2016.
Date of publication 29 Feb. 2016; date of current version 16 Nov. 2016.
Recommended for acceptance by J. Chen.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2016.2536024

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 12, DECEMBER 2016 3659

1045-9219� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

computation accuracy in terms of the number of edges,
strength distribution, community structure, Hop-plot and
effective diameters. Finally, a performance study has
been conducted to evaluate these algorithms in terms of
memory and disk usage, execution time and graph accu-
racy using a real massive social network dataset, i.e.,
Facebook application dataset. The results are presented
and discussed. Our comparison results can help find out
the most effective edge weight computation algorithm for
extracting a weighted graph for a given dataset. In addi-
tion, the results of our proposed algorithms, i.e., the edge
weights, can be used as one of the edge properties for the
edge objects in Graphbuilder, thus extending it to support
weighted graph extraction.

The rest of the paper is organized as follows: Section 2
gives an introduction on how graphs can be extracted from
a given sample SN dataset and how edge weights can be
computed, and then presents corresponding related work.
Section 3 describes the classification of existing edge weight
computation technologies and their implementations with
MapReduce. Section 4 presents our performance study,
reports and discusses our experimental results. Finally
Section 5 concludes and outlines the future work.

2 WEIGHTED GRAPH EXTRACTION AND RELATED

WORK

In general, the workflow for extracting weighted graphs
includes three steps: identify nodes, extract and tokenize
application specific features, compute edge weights. A set
of real SN dataset, i.e., Facebook applications dataset II1, col-
lects the application installation or usage records in Febru-
ary 2008 [6] and is used to demonstrate what graphs can be
extracted and how. The application data are recorded in the
following format.

<uid> <app_id_1> <app_id_2>...<app_id_j>
where “uid” stands for an anonymized user Id, and
“app_id_i” (1 � i � j) stands for an application Id. A sam-
ple of the facebook application data set II is illustrated in
Table 1.

2.1 Node Identification and Feature Extraction

There can be multiple choices for selecting the appropriate
data points as nodes, e.g., for Facebook application dataset
II, either users or applications can be chosen as nodes.

When users are chosen as nodes, Facebook application
dataset II can be graphically represented as a weighted
graph, denoted as G ¼ ðV; E;WÞ, where V is the set of verti-
ces denoting users, i.e., V = ðu0; u1; . . . ; un�1Þ, and n is the
number of users. A user can install and use multiple appli-
cations, e.g., the range of the number of applications used

by a user in Facebook application dataset II is within the
range < 3; 773 > [7]. The applications installed by a user
can be selected as features to characterize a user. Let
A¼ fa1; a2; . . . ; amg represents all the available applications,
and m is the number of applications. Let the applications
installed by a particular user, e.g., ui, be denoted as AðuiÞ ¼
fai1 ; ai2 ; . . . ; aikg, where k is the number of applications

used by user ui, and for any aij 2 AðuiÞ, we have aij 2 A.

After node identification and feature extraction, the sample
data in Table 1 can be represented in Table 2, where the
value at line i and column j is denoted as fðui; ajÞ.
fðui; ajÞ ¼ 1means that ui installs aj and fðui; ajÞ ¼ 0means
that ui does not install aj.

When applications are chosen as nodes, the dataset can
be represented as another weighted graph, denoted as

G0 ¼ ðV0; E0;W0Þ, where V0 is the set of vertices denoting
applications and V0¼ fa1; a2; . . . ; amg. An application can be
installed by multiple users, and such users can be selected
as features to characterize the application.

The number of dimensions and entries are two features
representing the data complexity and data volume, respec-
tively. Let the number of dimensions be denoted as N . The
number of its entries is the number of nodes, e.g., jVj2 for G
and jV0j for G0. When users are selected as nodes, from
Table 2, we can have N ¼ 6 and the number of its entries is
2. Similarly, when applications are selected as nodes, we
haveN ¼ 2 and the number of its entries is 6. That is, differ-
ent node selection can lead to different topological graphs
and thus different analysis results. Facebook application
dataset II collects application usage records for 297K users
and 8,1000 applications. When users are selected as nodes,
we have N¼ 8; 1000 and jVj¼ 297k. While when applica-
tions are selected as nodes, we can have N¼ 297k and

jV0j¼ 8; 1000, where we can see that dataset can be high
dimension and high volume.

2.2 Edge Weight Computation

After nodes and features are identified, the edges and their
weights for G and G0 need to be settled down. For G, there is
an edge between user ui and uj (i.e., ðui; ujÞ 2 E) if user ui

and uj have installed common applications. Similarly, for

G0, there is an edge between application ai and aj (i.e.,

ðai; ajÞ 2 E0) if application ai and aj have been installed by
some common users. Meanwhile, each edge is associated
with a weight representing the similarity between nodes.
For example, for any ðui; ujÞ 2 E, its weight is denoted as
wi;j and it is used to represent the similarity between the
two sets of applications installed by users ui and uj, i.e.,
AðuiÞ and AðujÞ.

TABLE 1
A Sample of Facebook Application Data II

uid app_id app_id app_id app_id app_id

1 1,523 1,544 1,567 1,580 1,594
2 1,544 1,567 1,580 1,599

TABLE 2
Transformed Sample Data

uid a1 a2 a3 a4 a5 a6

1,523 1,544 1,567 1,580 1,594 1,599

1 1 1 1 1 1 0
2 0 1 1 1 0 1

1. http://odysseas.calit2.uci.edu/doku.php/public:online_social_
networks#facebook_applications 2. jVj refers to the cardinality of the set V.

3660 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 12, DECEMBER 2016

Jaccard similarity (also named as Jaccard similarity coef-
ficient or Jaccard index in literature), usually used as an
indicator for similarity between two sets, measures their
degree of the similarity based on the presence of common
elements of two sets [8]. Therefore, Jacard similarity is used
as an example to study how to compute the edge weights.
For example, for any edge ðui; ujÞ 2 E, its weight, i.e., wi;j,
can be obtained by Equation (1)

wi;j ¼ jAðuiÞ \AðujÞj
jAðuiÞ [AðujÞj

¼ jAðuiÞ \AðujÞj
jAðuiÞj þ jAðujÞj � jAðuiÞ \AðujÞj :

(1)

Based on Equation (1), we can have that wi;j is a number
between 0 and 1. The bigger wi;j is, the more similar AðuiÞ
and AðujÞ are. Particularly, wi;j ¼ 0 means that there is no
common application installed by user ui and uj, therefore,
there should be no edge between ui and uj. On contrary,
wi;j ¼ 1 means that the applications installed by user ui and
uj are exactly the same.

The computation of wi;j includes the following three
steps: (i) Compute the cardinality of each set, i.e., jAðuiÞj
and jAðujÞj ; (ii) Compute the cardinality of the set intersec-
tion of AðuiÞ and AðujÞ, i.e., jAðuiÞ \AðujÞj; and (iii) Obtain
wi;j using Equation (1). For simplification, we use a simpli-
fied artificial data, as described in Table 3a, as an example
to illustrate how to compute edge weights.

Assuming that the set of users using application ai be
represented as UðaiÞ, we can have ai 2 Aðu0

iÞ \Aðu0jÞ if and
only if u0

i 2 UðaiÞ and u0
j 2 UðajÞ. A new table can be created

by exchanging the row and column in Table 3a, as shown in
Table 3b. The together occurring two items in an entry of a
table is called 2-itemset [9]. For example, u1 and u3 in Table 3b
constitute a 2-itemset for the entry where app id ¼ a1, where
the 2-itemset is denoted as ðu1; u3Þ. The 2-itemset ðu1; u3Þ
occurs in both entries where app id ¼ a1 and app id ¼ a2, i.e.,
the frequency of the occurrence of ðu1; u3Þ is 2. Let fi;j denote
the frequency of the occurrence of the 2-itemset ðui; ujÞ in
Table 3b, then we have f1;3 ¼ 2. Meanwhile, from Table 3,
we observe that Aðu1Þ \Aðu3Þ ¼ fa1; a2g, i.e., jAðu1Þ \

Aðu3Þj ¼ 2. In more general, we can have the following obser-
vation as summarized in Equation (2)

jAðuiÞ \AðujÞj ¼ fi;j: (2)

Based on Equation (2), the computation of jAðuiÞ \AðujÞj in
Table 3a can be regarded as the mining of the frequency of
2-itemsets in Table 3b. The objective of this paper is to com-
pute the edge weights for massive data once the nodes and
their features are given, as illustrated in Table 3c.

2.3 Related Work

This section surveys related work in Jaccard similarity mea-
surement and frequent itemset mining algorithms using
MapReduce. Mining the frequency of all 2-itemsets in large-
scale datasets is a challenge. Dimension reduction and fre-
quent pattern tree (FP-tree for short) based data compression
technologies can be exploited to speedup the performance.
Dimension reduction technologies reduce the dimension for
reducing the computation complexity. FP-tree based data
compression technologies exploit extended prefix-tree
structure to compress data into more compact structure so
as to make it fit into memory and avoid costly database
scans. According to whether dimension reduction or FP-
tree based data compression technologies are used, existing
work can be classified into three main categories, including
Apriori-based algorithms [10], signature-based algorithms [11],
and FP-tree-based algorithms [12]. As the dataset size grows,
the MapReduce version of each category has been proposed
to meet the large-scale dataset challenge.

First, Apriori algorithm is the most popular algorithm for
association rule mining, which was developed by Agrawal
and Srikant in 1994. It uses frequent (k-1)-itemsets to gener-
ate candidate frequent k-itemsets, where database scan and
pattern matching is used to collect the candidate itemsets.
Experiment results demonstrate the improvement on the
execution time and scalability of the parallel implementa-
tion of the Apriori-based algorithms using MapReduce [13],
where each iteration of the algorithms usually includes two
steps: (1) The Map function generates candidate items; and
(2) The reduce function sums the frequency of all candidate
item set appearance, prunes the infrequent itemsets and
outputs the frequent ones.

Second, signature-based algorithms explore similarity
preserving signatures for sets to measure the similarity of
the high dimensional objects compactly. Hashes are one type
of the most popular used signatures. Especially, MinHash is
a scheme developed by Broder in 1997 for estimating the
Jacarrd similarity between two sets [14], where the essence is
to hash each element using multiple independent hash func-
tions such that the same elements will have the same hash
values. Let H ¼ fh1; h2; . . . ; hnhg be a set of hash functions
that map the members of any two sets to distinct integers,
where nh is the number of hash functions. For any hx 2 H, let
mins2ShxðsÞ represent the minimum hash value of hx over
all the elements in set S. It has been proved that the probabil-
ity a hash function on two sets producing the sameminimum
values equals to their Jaccard similarity [14].

This property renders the fundamental basis for using
the probability to estimate the Jaccard similarity. However,
when hash collision occurs, i.e., more than one element in

TABLE 3
Simplified Artificial Data

FENG ETAL.: THE EDGEWEIGHTCOMPUTATION WITH MAPREDUCE FOR EXTRACTING WEIGHTED GRAPHS 3661

the set links to the same hash value, there will be inaccuracy
in the estimation. In order to increase the accuracy of the
estimation, multiple independent hash functions are used
and the average probability is used to avoid the relative
error. Assuming � is the given acceptable estimated error
and d is the relative error, in order to satisfy the require-
ment, the number of the hash functions nh has to satisfy the
constraint formalized in the following Equation (3) [15]

nh � 2þ �

�2
ln

2

d

� �
: (3)

It has been accepted that setting nh ¼ Oð1�Þ can ensure that
the estimated error of the MinHash is less than � and the rel-
ative error is no more than d [11], [16]. For example, when
� ¼ 0:01, then nh ¼ 1=0:01 ¼ 100. Recalling that in Facebook
application dataset II, the number of applications is 8,1000,
which is much larger than 100. That is, MinHash scheme
can map the large set of Fackbook application data into a
much smaller one, reducing the dimension and therefore
reducing the data size for further processing.

In general, signature-based Jaccard similarity measure-
ment algorithms usually include two phase Map-Reduce
computation. In the first phase, the Map function calculates
the minhash signatures which reduce the dimension, and the
Reduce function outputs the candidate itemsets. Then the
second phase completes the rest of the computation. Com-
paring to the Apriori-based algorithms, though there are one
more phase Map-Reduce in signature-based algorithms, the
reduced complexity by dimension reduction expedites
the following process, which makes it demonstrate remark-
able efficiency for various applications such as fast sequence
comparison [17] and privacy preserving record linkage [18].

Finally, in order to avoid the huge candidate sets gener-
ated in Apriori-based algorithms, FP-tree-based algorithms,
e.g., FP-Growth [12], find frequent 1-itemsets first, order
them in frequency descending order, construct the FP-tree
where more frequent items are more likely to be shared,
then recursively mine the FP-tree and grow frequent item-
sets obtained so far. In order to enable the FP-tree-based
algorithms work over the MapReduce, a group based algo-
rithm [19] has been proposed to partition the dataset in a
way that the following construction of the FP-trees and the

mining of the frequent itemsets can be carried out indepen-
dently in parallel.

Meanwhile, many related technologies have been pro-
posed recently to further improve the performance issues
raised in MapReduce based Jaccard similarity measurement
or frequent itemset mining, e.g., efficient data partition for
load balancing [20], intermediate information cache [21],
parallelized incremental mining [22], appropriate sampling
for dimension independent similarity measurement [11],
and integrating GPU for MapReduce programming [23]. It
is noteworthy that the above technologies can be used to
improve the performance of the three category edge weight
computation algorithms, but they are out the scope of this
paper. To simplify the description and discussion, it is not
assumed that they are in place in the algorithms’ design
and experimental comparison study with MapReduce in
the rest of the paper.

3 EDGE WEIGHT COMPUTATION ALGORITHMS

USING MAPREDUCE

Based on which category frequent itemset mining algorithm
is used, we design three algorithms for the edge weight
computation using MapReduce: Apriori-based algorithm, sig-
nature-based algorithm, and FP-tree-based algorithm. The exam-
ple dataset in Table 3 is used to illustrate how edge weights
are obtained by using each algorithm, where the sample
dataset are partitioned into two subsets and each of which
has two entries, as illustrated in the input of Fig. 1.

3.1 Apriori-Based Algorithm

The Apriori-based edge weight computation algorithm
includes two pass scan over the dataset. The first pass
obtains the cardinality of the application set of each node,
e.g., jAðuiÞj for any ui in the example data, as described in
the map phase (I) of Fig. 1. Meanwhile, the transform of the
dataset by exchanging the contents of rows and columns is
automatically done by the shuffle process of the MapReduce
framework, in a way where the column is composed of a
sequence of tuples ðuid : jAðuiÞjÞ, as shown in the reduces of
Fig. 1i. For each entry of the result obtained by the shuffle
process, the reducers will enumerate all the 2-itemsets in
the format of ðui : jAðuiÞj; uj : jAðujÞjÞ and output them, as

Fig. 1. Apriori-based edge weight computation over the example data.

3662 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 12, DECEMBER 2016

shown in the reduces of Fig. 1ii. Alternatively, the output
of the reducer can also be composed of tuples with an appli-
cation id and the sequence uids associated with the cardi-
nality of its application set, i.e., ðapp id; ui1 : jAðui1Þj; . . . ;
uik : jAðuikÞjÞ. However, this implementation will consume

more time since the concatenation of the ðui : jAðuiÞjÞ for
each application is time consuming with 297 K users in
Facebook application dataset II.

The second pass of the algorithm first reads the output
of the first pass and counts how often each 2-itemset
ðui : jAðuiÞj; uj : jAðujÞjÞ occurs, as shown in Map phase (II)
of Fig. 1. Then reducers in Reduce phase (II) will perform
the following workflow: (1) Accumulate and summarize the
frequency for each 2-itemset, as shown in Figs. 1 iii and 1
iv. Based on Equation (2), the obtained frequency of each 2-
itemset, e.g., ðui : jAðuiÞj; uj : jAðujÞjÞ, is equal to
jAðuiÞ \AðujÞj. (2) Compute the weight between any two
nodes using Equation (1), as shown in Fig. 1v. (3) Finally
proceed to output the weights. In all, Table 4 describes Apri-
ori-based edge weight computation algorithm for graph G
when users are selected as nodes, where p# denotes the pth

round of the scan pass over the dataset.

3.2 Signature-Based Algorithm

The signature-based edge weight computation algorithm
using MinHash scheme includes 2 pass scan over the

dataset. The first pass of the algorithm figures out the node
pairs having the same minimum value for each hash func-
tion, where the mappers in Map phase (I) performs the fol-
lowing workflow.

1. Calculate the hash values for the input data by hash-
ing each application using the chosen hash functions,
as illustrated in Map phase (I) (i) in Fig. 2.

2. Select the minimum hash values for each user
and hash function taking into account whether the
user has installed the applications. For any ui, let
minaj2AðuiÞh

xðajÞ be the minimum hash value of hx

over all elements in A and fðui; ajÞ 6¼ 0, i.e., the
application aj has been installed by the user ui. As
illustrated in the Map phase (I) (ii) in Fig. 2, we have

minaj2AðuiÞh
1ðajÞ ¼ 0 andminaj2AðuiÞh

2ðajÞ ¼ 1 for u1.

3. Transform obtained minimum hash values into the
locality aware minimum hash values for each hash
function and user by concatenating the location of a
hash function, i.e., the ith hash function, with a
hyphen and then the corresponding minimum hash
values for each hash function and the node. For exam-
ple, as illustrated in theMap phase (I) (iii) in Fig. 2, the
output is denoted as ðx minaj2AðuiÞh

xðajÞ; uiÞ, where x

denotes the xth hash function.
4. Emit the key-value tuples ðx minaj2AðuiÞh

xðajÞ; uiÞ.

TABLE 4
Apriori-Based Algorithm for the Edge Weight Computation

Fig. 2. Signature-based edge weight computation over the example data.

FENG ETAL.: THE EDGEWEIGHTCOMPUTATION WITH MAPREDUCE FOR EXTRACTING WEIGHTED GRAPHS 3663

The reducers accumulate the uids for each locality aware
MinHash value, enumerate and output the user pairs
ðui; ui0 Þ having the same locality aware MinHash value, as
illustrated in Reduce phase (I) in Fig. 2.

The second pass of the algorithm computes the edge
weights, whose workflow is similar to that of reducers of
Reduce phase (II) of the Apriori-based algorithm, excepts
that the weights of the edges are computed using the aver-
age probability of the set of hash functions on two sets pro-
ducing the same minimum values. That is, the weights are
obtained by the frequency of the 2-itemsets against the num-
ber of hash functions, i.e., wi;i0 ¼ fi;i0

nh
, as shown in the reduce

phase (II) (ii) in Fig. 2. In summary, Table 5 describes the
signature-based edge weight computation algorithm using
MinHash scheme.

3.3 FP-Tree-Based Algorithm

In order to enable the parallel and independent FP-tree-
based 2-itemset mining over MapReduce, we exploit the
group based partitioning algorithm proposed in [19] for the
FP-tree-based edge weight computation algorithm, which
includes 3 pass scan over the datasets. The mappers of the
first pass obtain the frequency of the 1-itemset for each user.

The reducers then group users according to their 1-itemset
frequencies. For example, there are two frequency values
for the uids in the example dataset, i.e., 3 and 2. The uids
with frequency 3 are categorized to group 2 and those with
frequency 2 are categorized to group 1. Let gðuiÞ represent
the group id of ui, the reducers of the first pass output
tuples ðui : jAðuiÞj : gðuiÞ; ai1 . . . aikÞ.

In the second pass, the mappers transform the dataset as
the previous two algorithm and emit sequences of tuples
ðak; ui : jAðuiÞj : gðuiÞÞ�, then the tuples are sorted during
the shuffle and merge stage according to the group id in
descending order. If there are multiple users have the same
group id, then the users are ordered in descending order
according to their 1-itemset frequency. Again, if there are
multiple users have the same group id and 1-itemset fre-
quency, then the users are ordered according to their uids
in ascending order. The reducers in Reduce phase (II)
aggregate and output the sorted tuple sequence ðui1 :
jAðui1Þj : gðui1Þ; . . . ; uil : jAðuil j : gðuilÞÞ for each application,

as shown in the Reduce phase (II) of Fig. 3.
In the third pass, the mappers categorize all the tuples in

its partition to appropriate groups, where the key is a group
id and the value is the tuples. In general, for any tuple

TABLE 5
Signature-Based Algorithm for the Edge Weight Computation

Fig. 3. FP-tree-based edge weight computation over the example data.

3664 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 12, DECEMBER 2016

sequence T ¼ ðui1 : jAðui1Þj : gðui1Þ; . . . ; uil : jAðuilÞj : gðuilÞÞ,
the mapper first locates its right-most group id, i.e., gðuilÞ,
and outputs a key-value gðuilÞ; ðui1 : jAðui1Þj : gðui1Þ; . . . ;
uil : jAðuilÞj : gðuilÞÞ. Then the tuples with the group id

which equals to gðuilÞwill be removed from T . If T is empty,

the mapper will be fed with the next tuple sequence. Other-
wise, the mapper will continue to output the key-values on
T . For example, for the tuple sequence T ¼ ðu1 : 3 : 2;
u2 : 3 : 2; u3 : 3 : 2; u4 : 2 : 1Þ, the rightmost group id is 1, the
mapper first outputs the key-value ð1; ðu1 : 3 : 2; u2 :
3 : 2; u3 : 3 : 2; u4 : 2 : 1ÞÞ. Then we have T ¼ T � ðu4 : 2 :
1Þ ¼ ðu1 : 3 : 2; u2 : 3 : 2; u3 : 3 : 2Þ. Since T is not empty, the
mapper continues to carry out the same operation on T and
it outputs another key-value ð2; ðu1 : 3 : 2; u2 : 3 : 2;
u3 : 3 : 2ÞÞ. Now, we have T ¼ T � ðu1 : 3 : 2; u2 : 3 : 2;
u3 : 3 : 2Þ ¼ fg. Then, the mapper completes its execution or
is fed with another tuple sequence if any.

Finally, the input data for each reducer in reduce phase
(III) is the tuples categorized to a group id, as illustrated in
Fig. 3i. Based on the input data, reducers first construct a
header table and a FP-tree for the frequent items and pat-
terns, as depicted in Fig. 3ii. Each entry in the header table
is a tuple ðui; jAðuiÞj; linkðuiÞÞ, where linkðuiÞ links all the
nodes whose uid is ui in the FP-tree. The entries in the
header table are ordered in descending order according to
their 1-itemset frequency. A node in the constructed FP-tree
is denoted as nj ¼ ðui : jAðuiÞj : gðuiÞ : fðuiÞÞ, where fðuiÞ
represents the occurrence frequency of the pattern ðroot ¼
fg; . . . ; ui : jAðuiÞj : gðuiÞÞ in reducer’s input data. For exam-
ple, the occurrence frequency of pattern ðu1 : 3 : 2; u2 : 3 : 2Þ
in the input data of reducer 1 is 2, corresponding fðu2Þ is 2
and thus we have n3 ¼ ðu2 : 3 : 2 : 2Þ. The constructed FP-
trees have the following features: (i) A node with bigger
jAðuiÞj is closer to the root and more likely to be shared;
and (ii) From each node on linkðuiÞ to the root constructed a
series of patterns, denoted as pðuiÞ. For example, in
Reducer (1), we have pðu2Þ ¼ fðu2 : 3 : 2 : 2; u1 : 3 : 2 : 3Þ;
ðu2 : 3 : 2 : 1Þg.

After the FP-tree is constructed, the reducer will com-
plete the following tasks: (1) Mine the frequencies for the

2-itemsets, which is similar to the traditional FP-growth
algorithm. The difference is that the frequencies of the
tuples with the same group id will not be counted when the
group id of the tuple is not the same as the one assigned to
the reducer. For example, the reducer 2 is assigned with
gi ¼ 1, although tuples ðu1 : 3 : 2 : 1Þ and ðu2 : 3 : 2 : 1Þ con-
struct a pattern in the FP-tree, their frequency will not be
counted since their group id are 2. (2) Compute edge
weights and output them, whose computation is similar to
the one used in Apriori-based algorithm. Table 6 describes
the FP-tree-based edge weight computation algorithm.

The FP-tree-based algorithm speeds up the performance
of the 2-itemset frequency mining, but it takes extra
execution time for the grouping process and the FP-tree con-
struction. The signature-based algorithm reduces the data
dimension and therefore expedites the computation. How-
ever, it obtains different weights for edge weights, e.g., the
weights for edges ðu1; u2Þ,ðu1; u4Þ,ðu2; u4Þ, and ðu3; u4Þ are
different from the ones obtained by the other two algo-
rithms, as shown in Figs. 1, 2 and 3. Howmuch such differ-
ences may affect the later data analysis based on the
extracted graphs? To the best of our knowledge, little work
has reported on such measurement. In order to evaluate the
performance of the above three category edge computation
algorithms, an empirical comparison study by applying
them to extract graphs for Facebook applications dataset II
will be given in the next section.

4 PERFORMANCE STUDY

The efficiency of an edge weight computation algorithm can
be measured by the memory and disk usage, execution time,
and accuracy of the extracted graph. First, memory and disk
usage measures how much memory and disk an algorithm
consumes during its execution. Higher memory and disk
usage limits the scalability of the algorithm on larger data-
sets and reduces the number of concurrent jobs. Second,
execution time is used to measure how much time the edge
weight computation takes, the shorter the execution time,
the more efficient an algorithm is. Finally, accuracy is used

TABLE 6
FP-Tree-Based Algorithm for the Edge Weight Computation

FENG ETAL.: THE EDGEWEIGHTCOMPUTATION WITH MAPREDUCE FOR EXTRACTING WEIGHTED GRAPHS 3665

to measure the quality of the extracted graphs. Metrics char-
acterizing graphs include number of nodes, number of edges,
nodes’ strength distribution, community structure, and hop-
plot [24], [25], [26]. The meaning of the first two metrics are
straight forward. The strength distribution is the probabili-
ties of the nodes’ strength, where the strength of a node is
the sum of the weights of the edges connecting to the node.
Comparing the nodes’ strength distribution of two graphs
measures their similarity in vertex importance in connectiv-
ity as well as the weights of the links [26]. A community is
regarded as a set of similar nodes, i.e., nodes in different
communities are dissimilar. Comparing the community
structure of two graphs measures their similarity in their
clumpiness, which can be calculated by computing the
inconsistency rates of detected communities from two
graphs. Finally, hop-plot is the sum of the total neighbor-
hood size NðhÞ for h hops starting from each node, which
can be further used to calculate the expansion, eccentricity
or effective diameter of the graph. Particularly, effective
diameter is the minimum number of hops in which a given
fraction (e.g., 90 percent) of all connected pairs of nodes can
reach each other. Comparing the Hop-plot and effective
diameter of two graphs measures their similarity in neigh-
borhood structure and eccentricity. The number of nodes is
assumed to be the same in our graph extraction, therefore,
we will measure the accuracy of the extracted graphs in
terms of number of edges, nodes’ strength distribution, commu-
nity structure and hop-plot and effective diameter.

Our set-up is based on a cluster consisting of 18 DOWN
TC4600 blades, each of which has a 2-core 2.4 GHz proces-
sor, 2� 300 GB hard drivers, 64 GB of RAM and a network
card with 1,000-gigabit Ethernet ports. We used OpenJDK
1.8.0 and Hadoop 1.2.1 to compile and run the codes. We
experiment with two sets of datasets extracted from Face-
book applications dataset II. The first set includes 11 subset
datasets with size ranging from 10 to 200k, whose features
are summarized in Table 7a, including the number of users
(denoted as NðuÞ), the number of applications (denoted as
NðaÞ), the maximum number of applications used by a user

(denoted as Mða; uÞ), and the maximum number of users
who install an application (denoted as Mðu; aÞ). The second
set is shown in Table 7b, where the number of the data
entries are chosen from 1 to 8 k. As discussed in Section 2,
we can at least extract two graphs from these two sets of
data, one uses users as nodes, and the other uses applica-
tions as nodes. The experimental results are obtained by
applying the three algorithms over the datasets.

4.1 Memory and Disk Usage

Figs. 4a and 4f depict the memory usage of the three algo-
rithms over the 10k-entry and 60k-entry datasets respectively
on a particular node during the last phase Reduce in the
cluster, where users are chosen as nodes and different lines
represent different tasks. We can see that all the algorithms
consume more memory as the number of dataset entries
increases. Meanwhile, we can also notice that both Apriori-
based algorithm and signature-based algorithm have multi-
ple concurrent executing tasks on a node, where the peak
memory usage for each task lasts for very short time.

However, for the FP-tree-based algorithm, there is only
one executing task on the node. In addition, the memory
used for that particular task keeps its peak memory usage
for quite a long time since the reducer keeps the tree in
memory for the 2-itemset frequency mining. This will
reduce the number of concurrent executing tasks on the
node when the size of the dataset increases.

Fig. 5 depict the overall disk usage of the last phase of
Map and Reduce of the three algorithms over the first set of
data, where we can see that the Apriori-based consumes the
most hard disk and it fails to complete the edge weight com-
putation for dataset larger than 60k entries and the signa-
ture based algorithm fails to complete the edge weight
computation for dataset larger than 160k entries. The failure
of the execution lies in two reasons: (1) Each blade in our
experiment has two 300 GB hard drivers, one of which is
for backup. Therefore each task on one blade can consume
less than 300 GB disk space. Once the output of the
results requires more hard disk, it will fail to complete its

TABLE 7
Experimental Dataset Features

Fig. 4. Memory usage.

3666 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 12, DECEMBER 2016

execution. (2) From Figs. 1 and 2 we can see that the map-
pers in the second Map phase in Apriori-based and signa-
ture-based algorithms output the intermediate 2-itemsets
(i.e., an edge), where a particular edge can appear in the
output of multiple mappers and the number of edges are
actually very high.

For a given dataset, let the number of edges of the
extracted graphs using Apriori-based algorithm, signature-
based algorithm, and FP-tree-based algorithm be repre-
sented as Ea, Es and Ef respectively, then the inconsistency
rates between edge numbers of the extracted graphs using
Apriori-based algorithm and the ones using signature-

based algorithm can be calculated using Da;s ¼ jEa�Esj
Ea

,

where n is the number of nodes. The numbers of edges of
each extracted graphs and their inconsistency rates are
recorded in Table 8, where (1) is for the ones when users are
chosen as nodes and (2) is for the ones when applications
are chosen as nodes. We can see that the Apriori-based and
FP-based algorithms obtain the same number of edges while
the signature-based algorithm obtains 40-70 percent more
edges for the first set of data and 20-45 percent more edges
for the second set of data. Considering the scale of the data-
set is large, we only output edges whose weights are greater
than a threshold. When the threshold is 0.5, the weights of
edge u1; u4 in Figs. 1 and 3 are 0.25 and edge u1; u4 won’t be
output by the Apriori-based and FP-tree based algorithms.
The collision of hash values in minHash scheme will
increase the similarity of such nodes whose similarity are
actually very low, e.g., the weight of edge u1; u4 in Fig. 2 is
0.5, which is greater than that in Figs. 1 and 3, and then
edge u1; u4 will be output by the signature-based algorithm.
That is why the signature-based algorithm outputs more
edges. In our set-up, the threshold is 0.6, we still can see
that the number of edges output is very high and it
increases quickly when users are selected as nodes. From
Table 8, we can see that the Apriori-based and FP-based

algorithms obtain the same number of edges while the sig-
nature-based algorithm obtains more edges. However, from
Fig. 3, we can see that the mappers in the second Map phase
in FP-tree-based algorithm donot output the intermediate
2-itemsets, which makes it consume the least disk space.

4.2 Execution Time

Figs. 6a and 6b depict the execution time of the three algo-
rithms over the first dataset. When users are chosen as
nodes, the execution time gets longer as the number of data
entries gets larger. Particularly, the execution time of the
Apriori-based algorithm exponentially grows against the
number of data entries, which is much larger and grows
much faster than those of the other two algorithms and it
fails to complete its execution on dataset with the number
of entries larger than 60 k because of short of disk spaces.

The signature-based algorithm achieves the shortest exe-
cution time once the disk space can meet its requirement.
Though the FP-tree-based algorithm computes the edge
weights by mining the frequency of the 2-itemset in the in-
memory tree, it have one more phase of MapReduce for
grouping. In addition, after the grouping algorithm com-
pletes its execution, there must be groups having the whole
data tuples without any removal, e.g., g1 in Reducer (2) in
Fig. 3. The data dimension of such sub-dataset can be very
high, whose value is positively correlated to the number of
data entries. Therefore, as the number of the input data
entries increases, corresponding data dimension increases,
which makes the edge computation over this group of data
much heavier than the others. In addition, the FP-tree

Fig. 5. Disk usage.

TABLE 8
Number of Edges of Extracted Graphs

Data Apriori FP-tree Signature

Ea Ef Es Da;s

(1) 10k 230,990 230,990 343,190 48.6%

20k 659,394 659,394 1,052,383 59.6%

30k 1,321,659 1,321,659 2,175,868 64.6%

40k 2,280,857 2,280,857 3,778,677 65.7%

50k 3,441,583 3,441,583 5,740,634 66.8%

60k 5,414,681 5,414,681 8,763,268 61.8%

(2) 10k 3,228 3,228 4,031 24.8%

20k 2,434 2,434 3,227 32.6%

30k 1,843 1,843 2,577 39.8%

40k 1,763 1,763 2,488 41.1%

50k 1,674 1,674 2,387 42.6%

60k 1,566 1,566 2,234 42.7%

Fig. 6. Execution time.

FENG ETAL.: THE EDGEWEIGHTCOMPUTATION WITH MAPREDUCE FOR EXTRACTING WEIGHTED GRAPHS 3667

constructed over this group of data in Reduce phase (II) in
Fig. 3 is much deeper and wider than others, which con-
sumes more memory and more execution time. Hadoop
sets a memory usage limitation, i.e., VMem, for every
computational node. When the memory consumed by a
task exceeds VMem, it will be killed and migrated to be exe-
cuted on another computational node. This can avoid that
an exceptional large memory consumption caused by a task
may handicap the necessary memory requirement of the
others. But this runtime migration prolongs the execution
time of the task. That is why once the number of the data
entries increase to a certain value (e.g, in our experimental
setup, 80 k), the execution time of the FP-tree-based algo-
rithm grows faster. This makes the task over the sub-dataset
with group id g1 the performance bottleneck of the FP-tree-
based algorithm and it can be even worse. Once none of the
computation node can satisfy the task’s memory require-
ment, it will also fail and the FP-tree-based algorithm will
thus fail to complete the execution.

However, when applications are chosen as nodes, there
is no obvious difference on the execution time among the
three algorithms, where the small difference comes from the
fluctuating delay of the data transmission over the network.
As discussed in Section 3, the frequencies of the 2-itemsets
are computed over the transformed datasets. Therefore, the
bigger the number of users who install an application, i.e.,
Mðu; aÞ, the more time the computation takes. As the num-
ber of data entries increases from 10 to 200 k, the value of
Mðu; aÞ increases almost linearly from 8,615 to 170,735, as
shown in Table 7a. However, for the same dataset, when
applications are chosen as nodes, the values of Mða; uÞ are
644 or 774 as the number data entries increases. That is why
the execution time of these three algorithms does not always
increase with the number of the data entries. Therefore, we
have that the execution time of the edge weight computa-
tion over a dataset are mainly affected by the nodes’ maxi-
mum feature dimension in its transformed dataset.

We can further verify our observation by carrying out
another experiment over the second dataset with smaller
number of data entries so that the value of their Mðu; aÞ) is
around the size of that of Mða; uÞ in Table 7a. As shown in
Table 7b, when the number of the data entries are chosen
from 1 to 8k, the values of their Mðu; aÞ are within the scope
½862; 6924�. Meanwhile, Fig. 6c shows that their correspond-
ing execution time are all within the scope ½40s; 220s�, which
is consistent with those results shown in Fig. 6b.

4.3 Accuracy

There is no data reduction or compression during the graph
extraction when the Apriori-based algorithm is applied.
Therefore, the metrics characterizing the extracted graphs
using Apriori-based algorithm are accurate and they can be
used as a reference for accuracy measurement for the other
two algorithms. The numbers of edges of each extracted
graphs and their inconsistency rates have been presented in
Table 8.

4.3.1 Strength distribution

First, we describe how we obtain the difference of the
strength distribution of two graphs. For any node ui in the
extracted graph, let si represent the its strength and initially

si ¼ 0. Then the strength of each node can be calculated as
follows: for all ðui; ujÞ 2 E, si ¼ si þ wi;j and sj ¼ sj þ wi;j.
Let INT ðsiÞ obtain the biggest integer which is not larger
than si, md ¼ maxui2VðINT ðsiÞÞ, and pj represent the num-

ber of nodes with strength si and INT ðsiÞ ¼ j. Then pj can
be calculated as follows: for all ui 2 V; pINT ðsiÞ ¼ pINT ðsiÞ þ 1.

The probability of the appearance of nodes with strength si
and INT ðsiÞ ¼ j inG can be calculated as Gp0j ¼ pj=n, where

n is the number of nodes in the graph G. Let the inconsis-
tency rates of the strength distribution of two graph G and
G0 be represented as DsðG;G0Þ, then DsðG;G0Þ can be calcu-

lated as follows: DsðG;G0Þ ¼
P

jGp0
i
�G0p0

i
j

md
.

Our experimental results show that the inaccuracy rates
of strength distribution of the FP-tree-based algorithm
against the Apriori-based one is always 0, meaning that it
achieves 100 percent accuracy for measuring vertex impor-
tance in connectivity and link weights. The inconsistency
rates of the strength distribution of signature-based algo-
rithm against the Apriori-based one over the first set of
dataset are depicted in Table 7a and 7b, where we can see
that the inconsistency rates with users as nodes are almost
an order of magnitude less than those with applications. In
addition, we can see that the inconsistency rates are all very
low and lower than 6 percent. This result is consistent with
inconsistency rates between edge numbers of the extracted
graphs using Apriori-based algorithm and the ones using
signature-based algorithm, as presented in Table 8.

4.3.2 Community Structure

Before measuring the inconsistency rates of detected com-
munities, we first introduce a clustering algorithm using
minimum spanning tree (MST) [27] over the obtained
graphs for community detection. Given a weighted graph,
the MST based clustering algorithm constructs MSTs, then
it removes edges with weights that are bigger than the pre-
defined threshold. The process is repeated until k clusters
are detected. The detected clusters form a set of communi-
ties. In order to apply the MST based clustering algorithm
over the obtained graphs, the weight between two nodes
need to be revised using Equation (4)

w0
i;j ¼ 1� wi;j: (4)

In this context, the graph accuracy can be measured by the
inconsistency rates between the two community sets. To be
specific, if two nodes are in the same community for set 1,
while they are classified into different communities for set
2, then an inconsistency occurs between set 1 and set 2. The
inconsistency rate between two community set is defined as
the number of the occurrence of such inconsistency against
the number of the pairs of any two nodes. More specifically,
suppose the correct set of communities detected from a
dataset is denoted as C ¼ fC1; C2; . . . ; Ckg. Assuming that
another detected set of communities to be measured is
denoted as C0 ¼ fC0

1; C
0
2; . . . ; C

0
mg, note that here k and m

can be different. For any node u 2 S k
i¼1Ci, suppose u 2 Cx

and u 2 C0
y, then for any node u0 2 Cx and u0 =2 C0

y, an incon-

sistency occurs since u and u0 is in the same community for
set C while they are not in the same one for set C0. Mean-
while, for and node u00 2 C0

y and u00 =2 Cx, another

3668 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 12, DECEMBER 2016

inconsistency occurs since u and u00 are not in the same com-
munity for set C while they are in the same community C0

y

for set C0. Let the inconsistency rate between C and C0 be
denoted as DcðC;C0Þ, the total number of the inconsistency
be denoted as

PðC;C0Þ, and n be the number of nodes. Dur-
ing the summation of inconsistency rates of any two nodes,
the same inconsistency are counted twice. Meanwhile, for n

nodes, there are C2
n ¼ n � ðn� 1Þ=2 pair of two nodes.

Therefore, DcðC;C0Þ can be calculated using Equation (5)

DcðC;C0Þ ¼
PðC;C0Þ=2
n � ðn� 1Þ=2 ¼

PðC;C0Þ
n � ðn� 1Þ : (5)

Our experimental results show that the inaccuracy rate of
the FP-tree-based algorithm against the Apriori-based one
is always 0, meaning that it achieves 100 percent accuracy
for community structure. The inaccuracy rates of the signa-
ture-based algorithm against the Apriori-based one over the
first set of dataset are depicted in Figs. 7c and 7d, where we
can see that the inconsistency rates with users as nodes are
much larger than those with applications. In addition, when
the number of the data entries gets larger, the changing of
the inconsistency rates with users as nodes is quite different
from the one with applications as nodes.

When users as chosen as nodes, the inconsistency rates
increase as the number of the data entries get larger. As
depicted in the Map phase (I) of Fig. 2, the bigger the num-
ber of a node’s feature dimension is, the more correspond-
ing hash values there will be. Then the probability of two
nodes having the same minimum hash value will get
smaller, i.e., the inaccuracy rates get smaller. Recall that
when users are chosen as nodes, the number of applications,
i.e,N¼ 8; 1;000. In addition, the maximum number of appli-
cations used by as user, i.e., Mða; uÞ, is 644 for all datasets
ranging from 5 to 25 k, as shown in Table 7a. Larger number
of data entries means more users and bigger probability of
the occurrence of hash value collisions, thus incurring big-
ger inconsistency rates.

When applications are chosen as nodes, the inconsistency
rates decrease as the number of the data entries gets larger.

Now, the rows of the hash values in the Map phase (I) of
Fig. 2 will be denoted using users. When the number of
entries increase, more users will be included into the hash
value calculation. This will enlarge the scope of the hash
values since they are location-aware. In addition, the value
of maximum number of users who install an application,
i.e., Mðu; aÞ, increases as the number of the data entries gets
larger, as shown in Table 7 (a). Both of these two data char-
acteristics enlarge the scope of the hash values and make
them scattered among the enlarging uids, reducing the
probability of the occurrence of hash value collisions and
thus the inconsistency rates.

4.3.3 Hop-Plot and Effective Diameter

For any two nodes ui 2 G and uj 2 G, let distðui; ujÞ repre-
sent the number of edges on the shortest path from ui to uj.
Then the sum of total neighborhood size NðhÞ for h hops
can be calculated using the neighborhood function defined
in Equation (6)

NðhÞ ¼ jðui; ujÞ : ui 2 V; uj 2 V; distðui; ujÞ � hj: (6)

The exact computation ofNðhÞ is too expensive for large disk
resident graphs. Fast and memory-efficient approaches like
ANF [28], HyperANF [29] and FlajoletMartin (FM) sketh
based approaches [30], [31] have been proposed for approxi-
mating the neighborhood function on large disk resident
graphs with small errors. In our experiment, we compare the
NðhÞ of the graphs extracted using the signature-based and
FP-tree-based algorithm against those using Apriori-based
algorithm to compare their similarity, i.e., accuracy. In our
experiment, we choose the source code of ANF3 to compute
the NðhÞ for the graphs. HyperANF and FM sketh based
approaches may outperform ANF in terms speed and scal-
ability, but they produce similar approximation accuracy.

Figs. 8a-8f shows the Hop-plot and effective diameters
(Eff-diameter in the figures for short) for two extracted

Fig. 8. Hop-plot and effective diameters.

Fig. 7. Inconsistency rates of the signature-based algorithm against Apri-
ori-based algorithm.

3. http://www.cs.cmu.edu/ christos/software.html

FENG ETAL.: THE EDGEWEIGHTCOMPUTATION WITH MAPREDUCE FOR EXTRACTING WEIGHTED GRAPHS 3669

graphs of the three algorithms, where we can see that Apri-
ori-based and FP-tree-based algorithms obtain similar
results, while signature-based algorithm obtains different
ones. For example, when users are chosen as nodes, the
effective diameters of Apriori-based and FP-tree-based
algorithms are around 5, but the effective diameter of the
signature-based algorithm is around 7.

4.4 Summary

In summery, our experimental results have the following
three important findings for edge weight computation,
which can be useful for selecting the most appropriate algo-
rithms for the edge weight computation for extracting
weighted graphs for a given dataset.

� The edge weight computation time, i.e., execution
time, is mainly affected by the maximum feature
dimension of the nodes, where the signature-based
algorithm obtains the shortest execution time and
the Apriori-based algorithm obtains the longest one.

� During the computation, the FP-tree-based algo-
rithm consumes the most memory while the other
two algorithms consume more disk space. It will be
better to choose Apriori-based and signature-based
algorithms when the execution environment has lim-
ited memory; and it will be better to choose the FP-
tree-based algorithm when the execution environ-
ment has limited disk space.

� The accuracy of the graph for the Apriori-based and
FP-tree-based algorithms are 100 percent correct.
When only the strength distribution is concerned,
the signature-based algorithm can obtain fast and
high precise result. When community structure is
concerned, the accuracy depends on the data charac-
teristics as well as the users’ requirement. When the
nodes’ feature dimension and the maximum nodes’
dimension are fixed, the accuracy decreases as the
number of entries increases. While when nodes’ fea-
ture dimension and the maximum nodes’ dimension
increases as the number of data entries increases, the
accuracy can increase. When Hop-plot and effective
diameters are concerned, it will be better choose
Apriori-based or FP-tree-based algorithm.

5 CONCLUSION

Extracting weighted graphs from raw dataset is one of the
indispensable preprocessing tasks for graph based data
mining and machine learning. Recent years have witnessed
the rapid growth of data from various applications, e.g.,
social networks, which presents great challenges to the edge
weight computation for weighted graphs. In addition, exist-
ing work lacks of the measurement on the accuracy of the
edge weights, which represents the graph accuracy and
affects the following mining and learning results.

This paper carries out a systematic study on edge weight
computation algorithms for extracting weighted graphs
with MapReduce Framework over a real social network
dataset, i.e., Facebook application data II. For a given data
set, there can be more than one graphs be extracted. This
paper describes the weighted graphs extracted from face-
book application data II, classifies edge weight computation

algorithms, presents their design and implementation with
the MapReduce framework, measures and discusses their
effectiveness. Particularly, this paper also propose compre-
hensive measurements on edge weight computation accu-
racy in terms of the number of edges, strength distribution,
community structure, Hop-plot and effective diameters,
regarding the graph based data mining applications. Our
experimental results can be useful for making decision on
selecting the most appropriate algorithms for the edge
weight computation for extracting weighted graphs for a
given dataset.

Finally, our current experiment results also demonstrate
that the group based dataset partition scheme for the FP-
tree-based algorithm can produce unbalanced data parti-
tion, our on-going research is investigating how to balance
the FP-trees for edge weight computation with MapReduce
framework. In addition, The effectiveness on other tools
such as graph compression and partition has only been
proved on graphs without edge weights their effectiveness
on graphs with edge weights may need further study. But
this is out of the research scope of this paper.

ACKNOWLEDGMENTS

The authors would like to thank Prof. X. Cheng-zhong for his
valued comments on improving the paper. We would also
like to appreciate the support by the Shenzhen Science and
Technology Foundation (JCYJ20150324140036842, JCYJ2015
0529164656096JCYJ201418193546117 and JCYJ2014050917
2609174), National Natural Science Foundation of China
(61103001,61170077, and 61202377), National Key Technology
Research and Development Program of the Ministry of Sci-
ence and Technology of China (2014BAH28F05), the Guang-
dong Province Key Laboratory Project (2012A061400024), the
Guangdong Natural Science Foundation (2014A030313553),
the National High Technology Joint Research Program of
China (2015AA015305), Science and Technology Planning
Project of Guangdong Province (2013B090500055), National
High Technology Joint Research Program of China
(2015AA015305) and NSF-China and Guangdong Province
Joint Project (U1301252). Z. Ming and R. Mao are the corre-
sponding authors.

REFERENCES

[1] N. Jain, G. Liao, and T. L. Willke, “Graphbuilder: Scalable graph
ETL framework,” in Proc. 1st Int. Workshop Graph Data Manage.
Exp. Syst., 2013, pp. 1–6. [Online]. Available: http://doi.acm.org/
10.1145/2484425.2484429

[2] J. Dean and S. Ghemawat, “Mapreduce: Simplified data process-
ing on large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113,
Jan. 2008. [Online]. Available: http://doi.acm.org/10.1145/
1327452.1327492

[3] V. Nair and S. Dua, “Folksonomy-based ad hoc community detec-
tion in online social networks,” Soc. Netw. Anal. Mining, vol. 2,
no. 4, pp. 305–328, 2012.

[4] H. Kautz, B. Selman, and M. Shah, “Referral web: Combining
social networks and collaborative filtering,” Commun. ACM,
vol. 40, no. 3, pp. 63–65, Mar. 1997.

[5] Y. M. Roberto J. Bayardo and R. Srikant, “Scaling up all pairs simi-
larity search,” in Proc. 16th Int. Conf. World Wide Web, 2007,
pp. 131–140.

[6] A. Nazir, S. Raza, D. Gupta, C.-N. Chuah, and B. Krishnamurthy,
“Network level footprints of facebook applications,” in Proc. 9th
ACMSIGCOMMConf. InternetMeas. Conf., 2009, pp. 63–75. [Online].
Available: http://doi.acm.org/10.1145/1644893.1644901.

3670 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 12, DECEMBER 2016

[7] P. Nancy and R. G. Ramani, “Frequent pattern mining in social
network data (facebook application data),” Eur. J. Sci. Res., vol. 79,
pp. 531–540, 2012.

[8] P. Jaccard, “Nouvelles recherches sur la distribution florale,” Bul-
letin De La Societe De Vaud Des Sci. Naturflles, vol. 44, pp. 223–270,
1908.

[9] M.-Y. Lin, P.-Y. Lee, and S.-C. Hsueh, “Apriori-based frequent
itemset mining algorithms on mapreduce,” in Proc. 6th Int. Conf.
Ubiquitous Inf. Manage. Commun., 2012, pp. 76-1–76-8. [Online].
Available: http://doi.acm.org/10.1145/2184751.2184842.

[10] R. Agrawal and R. Srikant, “Fast algorithms for mining associa-
tion rules in large databases,” in Proc. 20th Int. Conf. Very Large
Data Bases, 1994, pp. 487–499.

[11] R. B. Zadeh and A. Goel, “Dimension independent similarity
computation,” J. Machine Learning Res., vol. 14, no. 1, pp. 1605–
1626, 2013.

[12] J. Han, J. Pei, Y. Yin, and R. Mao, “Mining frequent patterns with-
out candidate generation: A frequent-pattern tree approach,”Data
Mining Knowl. Discovery, vol. 8, no. 1, pp. 53–87, Jan. 2004.

[13] N. Li, L. Zeng, Q. He, and Z. Shi, “Parallel implementation of
Apriori algorithm based on mapreduce,” in Proc. 13th ACIS Int.
Conf. Softw. Eng., Artif. Intell., Netw. Parallel Distrib. Comput., Aug.
2012, pp. 236–241.

[14] A. Broder, “On the resemblance and containment of documents,”
in Proc. Compression Complexity Sequences, 1997, pp. 21–29.

[15] E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk, R. Motwani,
J. Ullman, and C. Yang, “Finding interesting associations without
support pruning,” IEEE Trans. Knowl. Data Eng., vol. 13, no. 1,
pp. 64–78, Jan./Feb. 2001.

[16] C. H. C. Teixeira, A. Silva, andW.Meira. Jr., “Min-hash fingerprints
for graph kernels: A trade-off among accuracy, efficiency, and
compression,” J. Inf. DataManage., vol. 3, no. 3, pp. 227–242, 2012.

[17] J. Drew and M. Hahsler, “Strand: Fast sequence comparison using
mapreduce and locality sensitive hashing,” in Proc. 5th ACM Conf.
Bioinf., Comput. Biol. Health Informat., 2014, pp. 506–513.

[18] D. Karapiperis and V. S. Verykios, “A distributed framework for
scaling up LSH-based computations in privacy preserving record
linkage,” in Proc. 6th Balkan Conf. Infor., 2013, pp. 102–109.

[19] H. Li, Y. Wang, D. Zhang, M. Zhang, and E. Y. Chang, “Pfp: Paral-
lel FP-growth for query recommendation,” in Proc. ACM Conf.
Recommender Syst., 2008, pp. 107–114. [Online]. Available: http://
doi.acm.org/10.1145/1454008.1454027.

[20] M. J. C. Rares Vernica and C. Li, “Efficient parallel set-similarity
joins using mapreduce,” in Proc. ACM SIGMOD Int. Conf. Manage.
Data, 2010, pp. 495–506.

[21] D. Huang, Y. Song, R. Routray, and F. Qin, “Smart cache: An opti-
mized mapreduce implementation of frequent itemset mining,” in
Proc. IEEE Int. Conf. Cloud Eng., Mar. 2015, pp. 16–25.

[22] X. Wei, Y. Ma, F. Zhang, M. Liu, and W. Shen, “Incremental FP-
growth mining strategy for dynamic threshold value and database
based on mapreduce,” in Proc. IEEE 18th Int. Conf. Comput. Sup-
ported Cooperative Work Des., May 2014, pp. 271–276.

[23] M. Tiwary, A. Sahoo, and R. Misra, “Efficient implementation of
Apriori algorithm on HDFS using GPU,” in Proc. Int. Conf. High
Perform. Comput. Appl., Dec. 2014, pp. 1–7.

[24] D. F. Nettleton, “Data mining of social networks represented as
graphs,” Comput. Sci. Rev., vol. 7, pp. 1–34, 2013.

[25] D. Chakrabarti and C. Faloutsos, “Graph mining: Laws, genera-
tors, and algorithms,” ACM Comput. Surveys, vol. 38, no. 1, pp. 1–
69, 2006.

[26] A. Ioannis and T. Eleni, “Statistical analysis of weighted
networks,”Discr. Dyn. Nature Soc., vol. 2008, p. 16, 2008.

[27] C. Zhong, D. Miao, and P. Fr€anti, “Minimum spanning tree based
split-and-merge: A hierarchical clustering method,” Inf. Sci.,
vol. 181, no. 16, pp. 3397–3410, Aug. 2011. [Online]. Available:
http://dx.doi.org/10.1016/j.ins.2011.04.013.

[28] C. R. Palmer, P. B. Gibbons, and C. Faloutsos, “ANF: A fast and
scalable tool for data mining in massive graphs,” in Proc. 8th ACM
SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2002, pp. 81–90.

[29] P. Boldi, M. Rosa, and S. Vigna, “HyperANF: Approximating the
neighbourhood function of very large graphs on a budget,” in
Proc. 20th Int. Conf. World Wide Web, 2011, pp. 625–634.

[30] R.-H. Li, J. X. Yu, X. Huang, H. Cheng, and Z. Shang, “Measuring
the impact of MVC attack in large complex networks,” Inf. Sci.,
vol. 278, pp. 685–702, 2014.

[31] R.-H. Li and J. Yu, “Triangle minimization in large networks,”
Knowl. Inf. Syst., vol. 45, no. 3, pp. 617–643, 2015.

Yuhong Feng received the BS and PhD degrees
from the University of Science and Technology of
China, Hefei, China, and Singapore Nanyang
Technological University, Singapore, respectively.
She is currently an associate professor at the
College of Computer Science and Software Engi-
neering, Shenzhen University, Shenzhen, China.
She was an assistant researcher at SIAT, CAS
and a postdoctoral fellow at Hong Kong Polytech-
nic University, Hong Kong. Her research interests
include workflow management, cloud computing,

and data mining.

Junpeng Wang is currently working toward the
masters’ degree at the College of Computer Sci-
ence and Software Engineering, Shenzhen Uni-
versity, Shenzhen, China. His research interests
include data analysis and Cloud computing.

Zhiqiang Zhang received the BS degree from
the College of Computer Science and Software
Engineering, Shenzhen University, Shenzhen,
China. He is currently a software developer
at Beansmile, Guangzhou, China. His research
interests include Web technologies, cloud com-
puting, machine learning, and data mining.

Haoming Zhong received the BS and PhD
degrees from University of Science and Technol-
ogy of China, Hefei, China, and Singapore
Nanyang Technological University, Singapore,
respectively. He is currently a senior data archi-
tect in Big Data Center, WeBank, Shenzhen,
China. He was the director of software architect
at Moody’s Analytics (San Francisco Bay Area).
His research interests include artificial intelli-
gence, data mining, and financial data analytics.

Zhong Ming is currently a professor at the Col-
lege of Computer and Software Engineering,
Shenzhen University, Shenzhen, China. His
research interests include Cloud computing, soft-
ware engineering and embedded systems. He is
also a member of a council and senior member of
the ChineseComputer Federation.

FENG ETAL.: THE EDGEWEIGHTCOMPUTATION WITH MAPREDUCE FOR EXTRACTING WEIGHTED GRAPHS 3671

Xuan Yang received the BS degree from the
Xidian University, Xi’an, China, and, the MS and
PhD degrees from the Xian Jiaotong University,
Xi’an. She is currently a professor at the Col-
lege of Computer and Software Engineering,
Shenzhen University, Shenzhen, China. She
has published more than 80 papers. Her
research interests include intelligent informa-
tion processing, image processing & analysis,
and pattern recognition.

Rui Mao received the BS and PhD degrees in
computer science from the University of Science
and Technology of China, Hefei, China, and the
University of Texas at Austin, Austin, TX, USA,
respectively. He is currently an associate profes-
sor at the College of Computer and Software
Engineering, Shenzhen University, Shenzhen,
China. His research interests include universal
data management and analysis in metric space,
and high performance computing.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

3672 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 12, DECEMBER 2016

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

