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ABSTRACT
Similarity query (a.k.a. nearest neighbor query) processing has
been an active research topic for several decades. It is an essential
procedure in a wide range of applications (e.g., classification & re-
gression, deduplication, image retrieval, and recommender systems).
Recently, representation learning and auto-encoding methods as
well as pre-trained models have gained popularity. They basically
deal with dense high-dimensional data, and this trend brings new
opportunities and challenges to similarity query processing. Mean-
while, new techniques have emerged to tackle this long-standing
problem theoretically and empirically.

This tutorial aims to provide a comprehensive review of high-
dimensional similarity query processing for data science. It intro-
duces solutions from a variety of research communities, including
data mining (DM), database (DB), machine learning (ML), com-
puter vision (CV), natural language processing (NLP), and theo-
retical computer science (TCS), thereby highlighting the interplay
between modern computer science and artificial intelligence tech-
nologies. We first discuss the importance of high-dimensional simi-
larity query processing in data science applications, and then review
query processing algorithms such as cover tree, locality sensitive
hashing, product quantization, proximity graphs, as well as recent
advancements such as learned indexes. We analyze their strengths
and weaknesses and discuss the selection of algorithms in vari-
ous application scenarios. Moreover, we consider the selectivity
estimation of high-dimensional similarity queries, and show how
researchers are bringing in state-of-the-art ML techniques to ad-
dress this problem. We expect that this tutorial will provide an
impetus towards new technologies for data science.
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1 TUTORIAL OUTLINE
This tutorial consists of five parts. The first part motivates the need
for high-dimensional similarity query processing and introduces ba-
sic concepts. The second and third parts delve into query processing
algorithms. The fourth part covers selectivity estimation algorithms.
The fifth part discusses future directions and open problems. Pre-
sentation slides are available at https://szudseg.github.io/kdd21-
tutorial-high-dim-simqp/.

1.1 Background and Preliminaries
We first introduce the applications of high-dimensional similarity
query processing in data science and explains its increasing im-
portance. Then we describe basic concepts: (1) data models and
the way of which we convert raw data (text, images, video, etc.)
to high-dimensional data; (2) similarity/distance functions, mainly
Hamming distance for binary vectors and Euclidean distance and co-
sine similarity (angular distance) for real-valued vectors; (3) query
types, i.e., search and join queries, or thresholded and top-𝑘 (𝑘-
NN) queries, depending on the dimension of categorization; (4) a
summary of the solutions that will be elaborated in this tutorial.

1.2 Exact Query Processing
Exact query processing methods aim to find all the results that sat-
isfy the similarity constraint. Researchers are interested in this type
of solutions as it does not pose any uncertainty to the pipelines that
apply similarity query processing as a component. Representative
methods are based on trees [10], space partitioning [17, 19, 25] and
dimensionality reduction [1, 4].

1.3 Approximate Query Processing
It is commonly believed that it is hard to compute the exact results
of queries with a sub-linear cost due to the curse of dimensionality.
Instead, computing approximate results is sufficiently useful for
many practical problems, and these solutions empirically achieve
significantly higher efficiency and scalability than exact ones.
Locality Sensitive Hashing. Locality sensitive hashing (LSH) is a
data-independent hashing approach with probabilistic guarantees
on the worst-case performance [9]. It relies on a family of hash

https://doi.org/10.1145/3447548.3470811
https://doi.org/10.1145/3447548.3470811
https://szudseg.github.io/kdd21-tutorial-high-dim-simqp/
https://szudseg.github.io/kdd21-tutorial-high-dim-simqp/


functions that map similar objects to the same hash codes with
higher probability than dissimilar objects. Plenty of solutions have
been proposed. Recent development focuses on supporting various
similarity measures [29] and space-efficient indexing [22, 28].
Learning to Hash. Learning to hash (L2H) a data-dependent ap-
proach that maps original data to another (often Hamming) space
by exploiting the data distribution. The underlying principle is to
preserve the similarity information within an appropriate neighbor-
hood. Additional heuristics and optimizations are often added to fur-
ther reduce the information loss caused by the mapping or increase
generalization to unseen data. Recent advancements feature deep
learning in both supervised and unsupervised manner [3, 8, 13, 21].
Another line of methods is based on product quantization [11], with
the unique ability to handle billions of objects.
Partition-basedMethods. Methods in this category can be deemed
as dividing the high-dimensional space into multiple disjoint re-
gions. Partition is often carried out in a recursive way, so the index
is represented by a tree or a forest. Notable methods are based on
pivoting [27], hyperplane [2, 20], or compact partitioning such as
cluster [7] or Voronoi diagram [16].
Neighborhood-based Methods. These methods construct a prox-
imity graph where nodes represent objects and edges connect
nearby objects. The main idea is to perform a search for similar ob-
jects atop the proximity graph. These methods achieve top accuracy
and speed trade-off in empirical evaluations [12]. Notable methods
include 𝑘-NN graph [5], hierarchical navigable small world [14],
and navigating spreading-out graph [6].

1.4 Selectivity Estimation
Selectivity estimation outputs the approximate number of data
objects that satisfy a selection criterion. Due to its use in density
estimation, outlier detection, image retrieval, and query optimiza-
tion, selectivity estimation for high-dimensional data has received
considerable attention recently. Representative solutions are sam-
pling [26] and kernel density estimation [15]. A recent trend is to
formalize it as a regression task and utilize ML methods [23, 24].

1.5 Future Opportunities
We highlight a number of promising directions for future research:
(1) It is interesting to explore ML models as approximate solutions
(e.g., learning to index or learning to sample). (2) Answering com-
posite queries (e.g., conjunctive queries) over multiple attributes
will receive more attention. (3) Another direction is to develop effi-
cient algorithms for query processing in data management systems,
where ML, CV, and NLP techniques can help improve the quality.

2 PREVIOUS EDITIONS
The previous edition of this tutorial appeared at VLDB 2020 [18].
The new edition focuses on data science related applications (e.g.,
classification, regression, anomaly detection, and recommender
systems). In addition, the new edition features the following new
materials: (1) a thorough discussion on the use of similarity query
processing in various application scenarios (e.g., the role of similar-
ity queries in the entire workflow and the selection of algorithms),
(2) more data models and a broader range of related works, and
(3) more recent technical advancements and future trends.
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