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Distance-based indexing exploits only the triangle inequality to answer similarity queries in
metric spaces. Lacking coordinate structure, mathematical tools in Rn can only be applied
indirectly, making it difficult to theoretically study metric-space indexing. Toward solving
this problem, a common algorithmic step is to select a small number of special points,
called pivots, and map the data objects to a low-dimensional space, one dimension for each
pivot, where each dimension represents the distances of a pivot to the data objects. We
formalize a “pivot space model” where all the data objects are used as pivots such that data
is mapped from metric space to Rn , preserving all the pairwise distances under L∞. With
this model, it can be shown that the indexing problem in metric space can be equivalently
studied in Rn . Further, we show the necessity of dimension reduction for Rn and that
the only effective form of dimension reduction is to select existing dimensions, i.e. pivot
selection. The coordinate structure of Rn makes the application of many mathematical tools
possible. In particular, Principle Component Analysis (PCA) is incorporated into a heuristic
method for pivot selection and shown to be effective over a large range of workloads. We
also show that PCA can be used to reliably measure the intrinsic dimension of a metric
space.

© 2011 Published by Elsevier B.V.

1. Introduction

Given a database S and a distance function d, a similarity query comprises finding all the data points in S that are close
in distance to the query object. Both range queries and nearest neighbor queries are of general interest [7,12,30,34]. It has
been shown that k-nearest neighbor queries are systematic applications of range queries [7]. This presentation focuses on
range queries.

Range query (q, r). Given a query object q and a similarity measurement d, seek all data objects x within distance r to q,
i.e., d(q, x) � r. r is called the radius [7,15,26].

Intuitively, a range query (q, r) seeks all points contained in a ball centered at q with radius r in the metric space. This
ball is called the query ball.

Although multi-dimensional indexing methods supporting similarity queries have been intensively studied, these ap-
proaches are limited to data that can be represented in Rn and to the Euclidean distance function [14]. Distance-based
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indexing [7,15,26], also known as metric-space indexing, does not make use of data domain information. The available in-
formation about the data is derived solely from an oracle that computes the distance between pairs of objects. The only
requirement is that the distance function be a metric. The data set can be clustered and a data structure compiled off-
line. During an on-line search, the triangle inequality enables the elimination of clusters of data as possible solutions. As a
consequence, on-line similarity queries may be quickly computed.

This, so-called, “black-box” model is advantageous for any application where the data cannot be effectively mapped to
feature vectors. Even though one is not inclined to use distance-based indexing for multi-dimensional problems, distance-
based indexing subsumes multi-dimensional indexing, enabling a uniform programming model for problems that can be
recast into metric spaces.

The generality of the approach is also its challenge. What makes distance-based indexing difficult is the lack of coordinate
structure. The dimension of the data is not explicit. As a result, mathematical tools developed for Rn are not directly
applicable to distance-based problems.

A common method is to first map the metric space to Rk , where k is less than the number of points, and then to answer
the similarity query with geometric methods that have been developed for Rk . To summarize and formalize this method, we
propose the pivot space model. With this model, there are three steps to answer a similarity query in a general metric space.
In step 1, the data in the metric space is mapped into a subset of Rk , called the pivot space. Then, a region in Rk , named
the query cube containing all the query results is determined. In step 2, multi-dimensional methods are applied to retrieve
all the points in the pivot space that fall into the query cube. In step 3, all the points retrieved in step 2 are compared with
the query object to remove the false positives (Section 3).

It has been shown that any finite metric space of n points can be mapped isometrically into Rn , one dimension for each
point, using the L∞ norm [20] (let A = (a1,a2, . . . ,an) and B = (b1,b2, . . . ,bn), then L∞(A, B) = max{|ai − bi |, 1 � i � n}).
In our model we call the image of a dataset so constructed the complete pivot space. It will follow that the evaluation of
a query in the complete pivot space may be accomplished using multi-dimensional indexing methods but will require a
calculation for each of the n dimensions. Since n is the size of the database, dimension reduction is necessary.

The necessity of dimension reduction is also supported from a practical perspective: the memory issue. If the complete
pivot space is directly considered, O (n2) space is required to store all the distances, which is impossible for large real
datasets. The memory issue will not be further discussed since it is not the focus of this paper.

Next, we prove that any dimension reduction technique that creates new dimensions will still require a calculation for
each of the n dimensions. Therefore, the only effective form of dimension reduction for the complete pivot space is one that
selects a subset of the existing dimensions. This form is called pivot selection.

To demonstrate how a general dimension reduction technique can be applied to distance-based problems, we design a
pivot selection algorithm based on Principal Component Analysis (PCA), a popular dimension reduction technique for multi-
dimensional spaces (Section 5). The basic idea is to select existing dimensions that would best approximate the eigenvectors
computed by PCA. Empirical results show that our pivot selection heuristic outperforms a deterministic corner-selection and
is comparable to a well-accepted non-deterministic incremental selection heuristic [5].

Several analytic studies of high-dimensional query problems have concluded that the indexability of data is sensitive
to its dimension and that the performance of tree-based indexing on fixed size vector data sets degrades to a sequential
scan as the dimension of the data increases [2,11,27,31]. Based on the pivot space model, we propose to estimate the
intrinsic dimension of a metric space dataset based on the eigenvalues associated with the principal components of the
data’s image in Rn . By using controlled dataset, empirical results show that our method gives more accurate estimates of
intrinsic dimension (Section 6).

2. Related work

The development of distance-based indexing algorithms is commonly decomposed into to two sub-problems, pivot se-
lection and partitioning methods. Papers that focus on partitioning methods dominate the literature. Partitioning methods
fall into three categories, hyper-plane partitioning, vantage-points and bounding spheres. These are well discussed in a pair
of surveys and a text [7,15,26].

Only a few methods have been investigated for pivot selection [3–5,18,19,33]. Bustos et al. have published the most re-
cent work. They exploit sampling and seek to choose a set of pivots should maximize the mean and minimize the variance
of the pairwise L∞ distances of the data in the pivot space. Their heuristic selects pivots that maximize the mean [5]. Fur-
ther, they argue that good pivots are usually outliers, but that the reverse is not true. The Metric Tree (M-tree) [9] bulkload
algorithm selects pivots randomly but does not use any sampling [8]. However, results show that different pivots can have
dramatically different impacts (Section 4.3). SA-tree starts from a random point and selects the centers of neighboring cells
of a Voronoi diagram as pivots [22].

Distance-based indexing algorithms also often use the farthest-first-traversal (FFT) k-center clustering algorithm to
choose pivots. It is a fast and convenient way to identify corners, or outliers. FFT minimizes the maximum cluster di-
ameter and gives a result at most twice the optimal diameter [16]. Its time and space complexities are both O (n), where
the number of clusters is considered as a constant. The use of FFT is based on Yianilos’ observations made of uniformly
distributed points in the unit square [33]. He proposes to select the corners of the data set as pivots for his Vantage Point
Tree (VPT). Multi-Vantage Point Tree (MVPT) [3], an extension of VPT, selects multiple corners as pivots.
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Brin, in GNAT trees, suggests index trees be constructed with a variable number of pivots such that a larger number of
pivots are used for higher populated clusters to maintain tree balance [4].

What determines the indexability of data is not the dimension of the domain where the data is represented, but the
intrinsic dimension, a property of the distribution of the data. The intrinsic dimension is invariant no matter how the data
is represented as long as there is no distortion of the pairwise distances. Many authors have tried to define and quantify
intrinsic dimension [7,10,18]. We consider the intrinsic dimension to be the dimension of a Euclidean space into which the
data can be embedded with small distortion.

Prior estimations of intrinsic dimension relate the distribution of distances among pairs of elements in an arbitrary
metric space to the distribution of data in the vector space. The following are two existing methods.

Method 1. Chavez et al. [7] define the intrinsic dimension of a metric space as ρ = μ2/2σ 2, where μ and σ 2 are the mean
and variance of the pairwise distances.

Method 2. Another approach [18,29] measures how the volume of a hyper-ball, that is, the number of points contained in
it, changes with respect to the radius. Let r be the range query radius, and n be the average number of range query results.
Then, linear regression can be performed on the logarithm of n and r, and the resulting slope coefficient is an estimate of
the intrinsic dimension.

Method 1 is computationally simple, while its intuitive meaning is not clear. Ramakrishnan et al. use similar forms to
that of Method 1 to determine the stability of workloads [2,24]. Method 2 is a variation of the Minkowski fractal dimension
[10,13]. It is limited by values of r and the assumption of uniform distribution.

3. Pivot space model

Due to the lack of coordinate structure in general metric spaces, a widely used approach is to map the general metric
space into Rn , and then to respond to the query with multi-dimensional indexing. In this section, we summarize this
approach and propose the pivot space model. A theorem is given showing that the same pivot space can be produced from
a dataset in a metric space, or a dataset in Rn .

3.1. General steps

In this section, let Rn denote a general real coordinate space of dimension n. There are three steps.

Step 1.

(1) Map the data into Rn .
(2) Map the query object into Rn .
(3) Determine a region in Rn that completely covers the range query ball.

Almost all existing distance-based indexing methods proceed via pivot selection to map the data into Rn , i.e. to select
some particular point in the database as pivots and to represent each data point by its distances to the pivots. We name
the image so obtained the pivot space. Given a similarity query, the distances between the query object and pivots are
determined. This essentially maps the query object into the pivot space.

The shape of the image of the query ball of a range query (q, r) in a general metric space is not clear in a pivot
space. However, it can be proved, from the triangle inequality, that the image of the query ball is completely covered by a
hypercube of edge length 2r in the pivot space [7], which is actually a ball of radius r in the new metric space specified
by the pivot space and the L∞ distance. We call the hypercube the query cube. Fig. 1 shows an example where 2 pivots are
selected. All the points in the query ball are mapped into the query square in the 2-d pivot space plane. Points outside of
the square can be discarded using the triangle inequality while points within the square cannot be discarded. To answer the
query, one first retrieves all the points in the square. Then their distances to q are computed directly to determine whether
their pre-images are in the query ball.

Step 2. Exploit multi-dimensional techniques to retrieve all the points in the region determined in Step 1.

The basic idea of Step 2 is divide-and-conquer based on the data coordinates. Many partition methods in multi-
dimensional indexing can be applied here. For example, MVPT’s partition is similar to a k-d tree [1].

Step 3. For each point retrieved in Step 2, compute its distance to the query object to remove false positives.

Mao
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Fig. 1. The query ball of a range query in a general metric space is covered by a square in the pivot space.
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Fig. 2. Point-pivot pairwise n × k distance matrix D P ,d(S).

In Step 1, the query cube is a superset of the image of the query ball. Therefore, after all the points in the query cube are
retrieved, their distances to the query object have to be computed to remove the points whose pre-images are not covered
by the query ball.

Step 1 is the focus in this paper.

3.2. Pivot space model

Let (M,d) be a metric space, where M is the space containing the data, and d is a metric distance function. Let S = {xi |
xi ∈ M, i = 1,2, . . . ,n} be the database, n � 1. S is a finite indexed subset of M . Duplicates are not allowed.

Let P = {p j | j = 1,2, . . . ,k} be a set of pivots. P ⊆ S . Duplicates are not allowed.

Definition 1 (Pivot space, F P ,d(S)). Given the set of pivots p j ∈ P , each point in S can be mapped to a non-negative number,
which is its distance to p j . That is, the following mappings can be defined:

f j : M → R+ ∪ {0}, f j(x) = d(x, p j), p j ∈ P , j = 1, . . . ,k.

The ordered collection of these k mappings defines a vector-valued mapping F P ,d on M , which maps a point in M to a
point in the non-negative orthant of Rk . The jth coordinate of the image represents the distance to p j :

F P ,d : M → Rk: xp ≡ F P ,d(x) = (
f1(x), . . . , fk(x)

) = (
d(x, p1), . . . ,d(x, pk)

) ∈ F P ,d(M).

We say xp , a k-dimensional vector in Rk , is the image of x. The pivot space of S is defined as the image set of S under
F P ,d:

F P ,d(S) = {
xp

∣∣ xp = F P ,d(x) = (
d(x, p1), . . . ,d(x, pk)

)
, x ∈ S

}
.

F P ,d(x) can be written as F (x, P ,d) and F P ,d(S) as F (S, P ,d) to show that these mappings are specified in term of three
parameters. Pivot space shall also refer to the vector space Rk in which F P ,d(S) resides, since confusion will not result.

Here and in what follows, the superscript p denotes objects in the pivot space.

Definition 2 (Point-pivot pairwise distance matrix D P ,d(S)). D P ,d(S) is an n × k matrix (Fig. 2), whose (i, j)th element is the
distance from the ith data point to the jth pivot. Each row vector (xp

i ) can be regarded as a point in the pivot space
specified by all the distances from a database point to each of the pivots, and each column vector (pp

j ) can be regarded as
a basis vector in the pivot space specified by the distances from all points to the jth pivot:

D P ,d(S) = (
xp

1 , xp
2 , . . . , xp

n
)T = (

pp
1 , pp

2 , . . . , pp
k

)
,

where the xp
i ’s are the row vectors:

xp
i ≡ F P ,d(xi) = (di1,di2, . . . ,dik),
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and pp
j is the column vector:

pp
j ≡ (d1 j,d2 j, . . . ,dnj)

T .

Moreover:

dij = d(xi, p j) � 0, i = 1,2, . . . ,n, j = 1,2, . . . ,k.

D P ,d(S) can also be written as D(S, P ,d).

Properties of the pivot space and the distance matrix include:

(1) Each point in F P ,d(S) is a row in D P ,d(S). F P ,d(S) and D P ,d(S) are representations of one another.
(2) Because different points in S can have the same distance to a pivot, there might be duplicates among the rows of

D P ,d(S). Therefore, the correspondence between the database points and points in the pivot space F P ,d(S), or the rows
of D P ,d(S), is many-to-one. Similarly, there is a many-to-one correspondence between the pivots and the points in
F P ,d(S), or the columns of D P ,d(S).

The following characterizes the case when all the database points are used as pivots.

Definition 3 (Complete pivot space F c
d(S) and complete distance matrix Dc

d(S)). F c
d(S) = F S,d(S) and Dc

d(S) = D S,d(S). That is,
when all points in S are selected as pivots, the complete pivot space of S is the pivot space of S , and the complete distance
matrix of S is the distance matrix of S .

The complete pivot space and the complete distance matrix have the following properties.

(1) The dimension of the complete pivot space F c
d(S) is n, the size of S .

(2) Because duplicates are not allowed in S , there are no repetitions in the ordered set of distances from one point to all
others. Therefore, there are no duplicates in F c

d(S).
(2.1) Each point in the complete pivot space has exactly one coordinate with value zero, while all other coordinates are

positive. That is, all such points reside in the non-negative orthant of Rn .
(2.2) Dc

d(S) is a symmetric n × n matrix, with zeros on the main diagonal and positive entries elsewhere.
(2.3) The correspondence between points in S and points in F c

d(S) (row vectors of Dc
d(S)) is one-to-one. The correspon-

dence between points in S and the basis vectors in F c
d(S) (column vectors of Dc

d(S)) is one-to-one.
(3) Dc

d(S) contains all and only the information provided by the distance oracle. Different data sets from various metric
spaces can have the same complete pairwise distance matrix.

The following shows the identicalness between pivot spaces.

Theorem 1. Given metric space (M,d), database S, and pivot set P , then F (S, P ,d) = F (F (S, P ,d), F (P , P ,d), L∞), and
D(S, P ,d) = D(F (S, P ,d), F (P , P ,d), L∞).

Proof. It suffices to show that

F (S, P ,d) = F
(

F (S, P ,d), F (P , P ,d), L∞)
.

The following 5 relations follow by definition:

F (S, P ,d) = {
xp

∣∣ xp = F (x, P ,d) = (
d(x, p1), . . . ,d(x, pk)

)
, x ∈ S

}

F (P , P ,d) = {
pp

∣∣ pp = F (p, P ,d) = (
d(p, p1), . . . ,d(p, pk)

)
, p ∈ P

}

F
(

F (S, P ,d), F (P , P ,d), L∞) = {
F
(
xp, F (P , P ,d), L∞)}

F
(
xp, F (P , P ,d), L∞) = (

L∞(
xp, pp

1

)
, . . . , L∞(

xp, pp
k

))
, xp ∈ F (S, P ,d)

L∞(
xp, pp) = L∞[(

d(x, p1), . . . ,d(x, pk)
)
,
(
d(p, p1), . . . ,d(p, pk)

)] = max
{∣∣d(x, p j) − d(p, p j)

∣∣, j = 1,2, . . . ,k
}
.

Equality holds in one of the triangle inequalities:
∣∣d(x, p j) − d(p, p j)

∣∣ � d(x, p), j = 1,2, . . . ,k,

since for p ∈ P ⊆ S , there exists a t such that p = pt , t ∈ {1, . . . ,k}.
Therefore, we deduce that L∞(xp, pp) = d(x, p), and F (xp, F (P , P ,d), L∞) = (d(x, p1), . . . ,d(x, pk)) = xp .
Thus F (S, P ,d) = F (F (S, P ,d), F (P , P ,d), L∞), as required. �
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In others word, Theorem 1 says that for any pivot space F (S, P ,d) generated from a metric space (S,d) and a set P
of k pivots, an identical pivot space can be generated from a subset of Rk , i.e. F (S, P ,d), with pivots F (P , P ,d) and the
L∞ distance. Therefore, when dealing with the pivot space, there is no difference whether the pivot space is created from
a metric space dataset S or a real coordinate dataset F (S, P ,d). Thus, we can assume that the original data is F (S, P ,d),
in Rk .

In the complete pivot space, Theorem 1 becomes:

F c
L∞

(
F c

d(S)
) = F c

d(S), and thus Dc
L∞

(
F c

d(S)
) = Dc

d(S).

Note that it states the known fact that any finite metric space (size n) is isometric to a metric space formed by a subset
of Rn (Rn−1, to be more precise) with the L∞ distance [20].

In the following, Corollary 1 states that the mapping from the metric space to the complete pivot space can be ap-
plied recursively and the result remains invariant. Corollaries 2 and 3 describe the impact of Theorem 1 on distance-based
indexing. The proofs are omitted as they are straightforward.

Corollary 1. Let F c
L∞ (1)(F c

d(S)) = F c
L∞ (F c

d(S)) and F c
L∞ (n+1)(F c

d(S)) = F c
L∞(F c

L∞ (n)(F c
d(S))), n � 1. Then:

F c
L∞ (n)

(
F c

d(S)
) = F c

d(S), n � 1.

Corollary 2. Since the data set S from any general metric space can be mapped isometrically into the complete pivot space with the
L∞ metric without loss of any distance information, instead of indexing S in a black-box metric space, it is equivalent to index F c

d(S)

in the vector space Rn.

Corollary 3. The intrinsic dimension of S and F c
d(S) are equal.

This is because that the intrinsic dimensions are specified by the pairwise distances and the pairwise distance matrices
of S and F c

d(S) are the same.

4. Dimension reduction for distance-based indexing

This section is focused on Step 1 of tackling distance-based indexing via Rn . The underlying question is how to map a
metric space to Rn? We study the question from the perspective of dimension reduction. The discussion starts from the
complete pivot space, the most straightforward case and the case with all the information. Issues under discussion include
“can we evaluate similarity queries in the complete pivot space directly?”, “how to perform dimension reduction for the
complete pivot space?”, “why is pivot selection important?”, and “how to select pivots?”.

4.1. Evaluating similarity queries in the complete pivot space directly

Theorem 2 answers the question “can we evaluate similarity queries in the complete pivot space directly?”. It is straight-
forward and helps to understand Section 4.2.

Theorem 2. Evaluation of similarity queries in the complete pivot space degrades the query performance to linear scan.

Proof. Given a similarity query object, the computation of its coordinates in all dimensions of the complete pivot space is
already a linear scan of the database. �

Therefore, to answer the similarity query posed in the metric space in Rn , dimension reduction in the complete pivot
space is inevitable.

4.2. Pivot selection: the only form of effective dimension reduction

Theorem 2 establishes the necessity of dimension reduction in the complete pivot space. The underlying reason is the
lack of a coordinate structure in a general metric space. In the following, we discuss the type of dimension reduction that
can be applied to the complete pivot space. A dimension reduction technique is termed “effective” if evaluation of similarity
queries in the space generated by this technique does not degrade to a linear scan. Not all dimension reduction methods
for multi-dimensional indexing are effective for distance-based indexing.

Let S = {xi | i = 1,2, . . . ,n}, be the database, and let d be the distance oracle. Let y be an arbitrary point in the metric
space, and let its coordinates in the complete pivot space F c

d(S) be y(1), y(2), . . . , y(n) . Then, y(i) = d(y, xi), i = 1,2, . . . ,n.
Let a new coordinate y(n+1) = G(y(1), y(2), . . . , y(n)), be specified by some unspecified function G . For example, G might be
a linear combination of its variables. Given a query object q, to compute coordinate q(n+1) , coordinates q(1),q(2), . . . ,q(n) in
the complete pivot space F c

d(S) have to be computed first. This already represents a linear scan of the database. Therefore, if
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Table 1
An example of new dimension based on all existing dimensions where n = 2.

Original dimensions New dimension: 45◦ line

y(1) = d(y, x1) y(2) = d(y, x2) y(3) = (y(1) + y(2))/
√

2

x1 d(x1, x1) d(x1, x2) (d(x1, x1) + d(x1, x2))/
√

2
x2 d(x2, x1) d(x2, x2) (d(x2, x1) + d(x2, x2))/

√
2

Fig. 3. Pivot selection keeps some of the columns of the complete distance matrix and removes the others.

Fig. 4. Example of pivot selection: 3 points on a line.

a dimension reduction technique creates new dimensions based on all existing dimensions, evaluation of similarity queries
in the space generated by this technique degrades to a linear scan. Namely, answering the query without using the index
data structure.

Table 1 shows an example where n = 2, i.e. there are only two points in the database. Therefore, the complete pivot
space has dimension 2 and the data is mapped on to a 2-d plane. Assume a new dimension is created along the 45◦ line,
then the coordinate of y under the new dimension can be computed as: y(3) = (y(1) + y(2))/

√
2. To compute y(3) , one has

to know y(1) and y(2) , which is a linear scan of the database already.
Although the power of dimension reduction methods in multi-dimensional indexing is clear, the cost to set up the

coordinate structure based on new dimensions is excessive. Therefore, dimension reduction for the complete pivot space
should only select existing dimensions.

With k pivots, the dimension of the pivot space is k, decreased from n in the complete pivot space. For the pairwise
distance matrix, pivot selection specifies a sub-matrix with the same number of rows just by removing some columns
(usually most). This corresponds to dimension reduction in the complete pivot space (Fig. 3).

Therefore, pivot selection is the only effective form of dimension reduction for the complete pivot space. It is the only
effective form of mapping from a metric space to Rk .

4.3. The importance of pivot selection

To date, the major attention in this area has been on the partitioning problem of Step 2. The importance of pivot selection
is not fully recognized, and most methods just try to mimic multi-dimensional indexing in metric spaces.

Pivot selection can be viewed as a process of information loss. The information available to Step 2 is limited by pivot
selection. Pivot selection impacts the distribution of data in the pivot space, which is critical to the search performance of
Step 2. Moreover, in a pivot space produced from a “better” set of pivots, data are typically more distinguishable from each
other. Thus, the number of false positives is reduced and Step 3 is faster.

For example, take three points {x, y, z} located on an axis at 1, 2 and 3, respectively (see Fig. 4). If x (or z) is selected
as the pivot, then the three points will have three unique and distinguishable distances from the pivot, namely 0, 1 and 2,
respectively. However, if y is the pivot, both x and z will have distance 1 from it, making them indistinguishable.

A second example is to select two pivots for points randomly sampled from the unit square with the Euclidean norm.
The common method is to use the FFT algorithm to select the two farthest opposite corners of the data [16]. For uniform
vector data, these two corners are close to the two ends of the data’s first principal component (with the largest eigenvalue).
The distances from a point to the two farthest opposite points largely correlate with each other. If a point is close to the
first pivot, usually it is far from the second pivot. As a result, if two points are not distinguishable by the first pivot (their
distances to the first pivot are similar), they are not likely to be particularly distinguishable by the second pivot. Therefore,
selecting these two pivots does not provide much more information than selecting just one pivot. An alternative is to select
two corners on the 1st and 2nd principal components. Since the principal components are orthogonal to each other, the
two pivots in this case define two less correlated dimensions. If two points are not distinguishable by one pivot, they can
still be distinguished by the other pivot.

Fig. 5 shows the pivot spaces of points randomly sampled from the unit square with different pivots. The two pivots are
opposite corners (0,0) and (1,1) in (a) and are neighboring corners (0,0) and (1,0) for (b). We can see that the pivot space
in (b) spreads out more widely (less densely) than that in (a). Therefore, data in pivot space in (b) are more distinguishable.
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Fig. 5. Pivot spaces (2 pivots) of points randomly sampled from the unit square, with different selection of pivots.

Although pivots are always corners, different corners can still have much different impact on query performance. This
supports Bustos et al.’s observation that outliers might not be good pivots [5].

4.4. Adapt dimension reduction to pivot selection

We propose a heuristic to adapt general dimension reduction methods that create new dimensions to distance-based
problems. The basic idea is to select existing coordinates that best approximate the new dimensions created by dimension
reduction.

One way is to select the existing coordinate with the maximum correlation, or the minimum angle, with the new
dimensions created by dimension reduction. Bustos et al. [5] suggest that a good choice of pivots should maximize the
mean of the pairwise distances in the pivot space. To increase the mean of the pairwise distance also, we consider the
covariance instead of the correlation. That is, for each new dimension, select the point whose image in the pivot space has
the largest projection on that new dimension.

With this heuristic, a general dimension reduction technique can be adapted to pivot selection in two steps. First, run the
dimension reduction on the complete pivot space to create the new dimensions. Second, select the pivots with the largest
projections on the new dimensions.

We show how to adapt PCA to pivot selection with this heuristic in the next section.

5. PCA in distance-based indexing

In this section, we apply PCA to pivot selection and to the estimation of intrinsic dimension.

5.1. PCA for pivot selection

In Step 3 (see in Section 3.1), points of the query cube in the pivot space need to be checked by computing the distance
with the query object directly. Therefore, it is of key importance to reduce the number of points in the query cube. We
aim to maximize the variance of the data along the dimensions of the pivot space, which means the data points are more
distinguishable among each other. Because PCA considers the distribution of the whole data set and maximizes the variance
of the data along each principal component, we choose it for pivot selection.

A difficulty with PCA is the computational cost. Even a fast approximation usually takes O (n2) time, which is too ex-
pensive for large databases even if it is computed off-line. As Bustos et al. [5] point out, although good pivots are usually
outliers, outliers are not always good pivots. A few bad outliers can easily ruin the results of selection. However, the set of
outliers forms a good candidate set for good pivots. PCA can be conducted on the candidate set. In other words, PCA is not
performed on the complete pivot space, but on a pivot space with outliers as pivots. Since the size of the set of outliers is
much smaller than the database, the computational cost of PCA is decreased.
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PivotSelection ((S,d): data set, k: number of pivot, c: constant)
{ //run FFT to create a candidate set of size k ∗ c
1. candidate = FFT(S,k ∗ c);

//generate the pivot space with candidate as the pivot set
2. PS = F(S, candidate, d);

//run PCA on PS
3. PCSET = EMPCA(PS,k);

//for each PC, find the point with the largest project on it
Pivots = {};

4. for each PC ∈ PCSET
Pivots = Pivots U argmaxx(Proj(PC, x));

return Pivots; }

Fig. 6. Algorithm for pivot selection.

Our pivot selection algorithm is shown in Fig. 6. In step 1, a number of outliers of the data are found by FFT and taken
to form a candidate set of pivots. The constant c is named the FFT-scale, because of the fact that if k pivots are to be
selected, ck corners will be selected by FFT. Empirical results show that a good choice of c is approximately 30. In step 2,
the distances between the corners and the database points are computed to form the distance matrix of the candidate
outlier pivot space, on which PCA is performed in step 3. The PCA algorithm applied is EMPCA [25], which can compute
only the given number of principal components with the largest eigenvalues. Finally in step 4, for each principal component,
the data point whose image in the pivot space has the largest projection on that principal component is selected as a pivot.
Since k and ck is much smaller than the database size, the time complexity is O (n). The algorithm is compared with FFT
and Bustos et al.’s incremental sampling selection method [5].

5.2. Estimating the intrinsic dimension

According to previous work [20] and the pivot space model, the complete pivot space together with the L∞ distance
is isometric to the original metric space. Therefore, methods to estimate the intrinsic dimension of Rn [6,17] are now
applicable to a metric space. We introduce a third method to estimate the intrinsic dimension based on the relative change
of eigenvalues of PCA in the complete pivot space, equivalently, of the complete distance matrix Dc

d(S).

Method 3. Let Q = {q1,q2, . . . ,qn} be the principal components (PCs) of the data in the complete pivot space. Let
λ = {λ1, λ2, . . . , λn} be the variances (eigenvalues) corresponding to each PC, λ1 � λ2 � · · · � λn � 0. Note that the λi are
normalized so that they sum to 1. The intrinsic dimension is estimated as

(1) d̂ = argmaxi(λi/λi+1), i = 1, . . . ,n − 1, and

(2)
∑d̂

j=1 λ j > 0.6, and
(3) 0.015 � λd̂+1 � 0.035.

Condition (1) indicates that the eigenvalues decrease relatively the most from λi to λi+1. Condition (2) guarantees that
at least 60% of the variance of the data is maintained if they are reduced to dimension d̂. Condition (3) ensures that prin-
cipal components with tiny (< 1.5%) variance (eigenvalue) will be excluded and principal components with larger (> 3.5%)
variance will be included.

The three methods are evaluated using a suite of workloads. The results in Section 6 show that all three methods are
asymptotically correct, while Method 3 gives quantitatively more accurate estimates for data whose intrinsic dimension are
known.

6. Empirical results

The empirical study involves two test suites, the MoBIoS test suite [21] and the SISAP test suite [28] used in [5]. Two
index structures are used, i.e. the MVP tree [3] and the pivot table [23]. The effect of the constant FFT-scale is first study.
Then the query performance of our PCA method and the incremental selection method is compared. At last, the PCA-based
method to estimate intrinsic dimension is applied to the MoBIoS test suite.

6.1. Test suite

The MoBIoS test suite consists of synthetic vector data, biological data, real vector data and an image dataset [21].
The synthetic vector data consists of multi-dimensional vector data of uniform, exponential and normal distributions.

Different dimensions have independent identical distributions. The real vector data consists of the US cartographic boundary
data of Texas and Hawaii.
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Table 2
Summary of MoBIoS test suite.

Workload Total size Distance oracle Domain dimension

Vector (uniform) 1M

L1, L2, L∞ norm

1–20
Vector (exponential) 100k 1–10
Vector(normal) 100k 1–10
Texas 190k 2
Hawaii 9k 2

Mass-spectra < 90k Fuzzy cosine distance 40 000
Protein 100k Weighted edit distance 6–18
DNA < 256k Hamming distance 9–18
Image 10 221 L-norms (linear comb.) 66

Three types of biological data are considered: (1) the amino-acid sequence fragments of the yeast proteome with
weighted-edit distance based on the metric PAM substitution matrix, mPAM [32], (2) the DNA sequence fragments of the
Arabidopsis genomes with Hamming distance, and (3) analytically determined peptide fragmentation spectra of human and
E. coli proteins with a pseudo-semi-metric cosine distance.

The protein sequence dataset contains FASTA formatted amino-acid translations extracted from GenBank/EMBL/DDBJ
records that are annotated with one or more CDS features. We split the sequences into overlapping fixed length frag-
ments or q-grams. The fragment length is 5. There is one q-gram for each sequence element. The distance between two
fragments is their global alignment score. The substitution matrix used is mPAM [32], which makes the distance function
metric. The distance values are integers between 0 and 30.

In our mass spectra data, each spectrum is represented as a very high-dimensional binary vector. A fuzzy measure of the
shared peaks count (SPC) can be interpreted as a modified form of cosine distance. Two peaks are marked as being equal
if the absolute difference of their m/z values lies within a certain tolerance. Based on the cosine distance, the distance
between two data points is the angle between their vector representations. Thus, the distance values are continuous in
[0,π/2]. For mass-spectra, most of the data point pairs have the maximum distance, indicating that points are far away
from each other, and there is no intrinsic clustering.

The image dataset consists of 10 221 images. Each image is represented by 3 sets of features reflecting the image prop-
erties in structure, texture, and color. Each set of features can be considered as a vector. Consequently, an image can be
represented by three vectors, with length 3 for structure, 15 for color and 48 for texture. For each feature set, a distance
function is defined. For texture and structure features, the distance functions are both L2 norm. For the color feature, the
distance function is actually L1 norm. The final distance is a linear combination of the distances of each feature set, with
coefficients of value 1/3 respectively. Since both L2 and L1 norms have the metric properties, the final distance also has the
metric properties.

The MoBIoS test suite is summarized in Table 2. Please note that database size refers to the number of data records in a
database.

Two datasets from the SISAP test suite [28] are involved, i.e. the English dictionary and the NASA image archives. The En-
glish dictionary consists of 69 069 words and uses the edit distance. The NASA archives consist of 40 700 images represented
as 20-dimensional vectors with the Euclidean distance.

Please note that uniformly distributed vector dataset is included in both the MoBIoS test suite and the SISAP test suite.
In this paper, uniform vector dataset is included when we study the SISAP test suite.

6.2. Index structures and methodology

For MVPT [3], the partition algorithm is clustering partition [18]. The number of pivots is 2 for Texas and mass-spectra
data, 4 for DNA and protein data, and 3 for all others. Based on each pivot, 3 partitions are generated. The maximum
number of data points in each index leaf node is 100.

For pivot table [23], number of pivots used are 5, 10, 15, . . . , 100.
The sizes of the databases are all 100k, except for those small workloads for which only limited amounts of data is avail-

able. Since distance evaluation in a metric space is usually costly, we use the average number of distance calculations, which
is implementation independent, to answer 5000 (for MVTP, or 10% of the database size) range queries as the performance
measure of each index. The queries are chosen sequentially from the beginning of the dataset files of each workload. The
radii of range queries are chosen so that approximately 0.01% of the databases are returned as query results.

6.3. FFT-scale

To reveal the effect of FFT-scale, 100 MVP indices are built for each workload using PCA-based pivot selection with
FFT-scale varying from 1 to 100. The query performances of 4 workloads are plotted in Fig. 7. We can see that the query
performance gets better (number of distance computations decreases) as the FFT-scale increases. The query performance is
stable for FFT-scale greater than 20–40. The results of other data show a similar trend. Therefore, we use FFT-scale = 30 in
further experiments.
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Fig. 7. Effect of FFT-scale on query performance.

Table 3
Comparison of pivot selection heuristics, measured by query cost per the number of distance calculations.

Dataset Radius Selectivity FFT Incremental PCA

Query Build Query A N Build Query

DNA 18-mer fragments 5 0.017% 68357.2 60.9M 62417.7 9k 10 57.5M 60968.1
Texas 0.015 0.011% 27.7 66.6M 26.7 30k 10 58.8M 27.5
Uniform vector dimension 8 0.3 0.015% 4952.5 66.3M 4822.6 30k 10 58.5M 4394.4
Image 0.08 0.13% 1371.4 5.4M 1209.9 5k 15 4.6M 1106.1

6.4. Comparison of pivot selection heuristics

6.4.1. On MVPT and the MoBIoS test suite
We compare the three pivot selection heuristics, i.e. FFT, Bustos et al.’s incremental selection method [5], and the PCA-

based method. MVP indices are built with different heuristics and their query performances are compared.
The construction cost of indices is measured by number of distance computations to build them. To be fair, we make

sure the PCA-based method and the incremental method have similar construction cost. There are two parameters, A and N
for the incremental method. Per Bustos et al. [5], we try to use a large value for A and a small value for N . The results are
shown in Table 3. Moreover, since it is hard to make the two methods have exactly the same construction cost, we always
allow more construction cost for incremental method (see Table 3).

The query performances of the three methods are also shown in Fig. 8 (normalized by the value of the PCA method). Both
Fig. 8 and Table 3 show that for all workloads, FFT always yields the worst query performance. For most of the workloads,
the PCA based method yields the best query performance. The only case where the incremental method yields the best
performance is for Texas data, where all the three methods do not differ much. We believe this is because Texas data are of
low intrinsic dimension and so are easy to index.

6.4.2. On MVPT and the SISAP test suite
In this section, we compare the query performance the three pivot selection heuristics on the SISAP test suite using

MVP index. The number of pivot is always 3. For each dataset, three indexes are built for each pivot selection heuristic,
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Fig. 8. Query cost of three pivot selection methods.

Table 4
Range query radii and selectivity of the SISAP test suite.

Dataset
Size

Uniform vector dim 8 NASA image archives English dictionary

100 000 40 150 69 000

Radius 0.2 0.25 0.3 0.35 0.4 0.35 0.4 0.45 1 2
Selectivity 0.002% 0.005% 0.015% 0.043% 0.11% 0.05% 0.08% 0.15% 0.005% 0.04%

Fig. 9. Query performance of three pivot selection methods on the SISAP test suite using MVPT. (The vertical axis shows number of distance calculations
while the horizontal shows range query radius.)

respectively. 10% of the database taken from the beginning of the data file is used as range query objects with a number of
radii. The radii and the corresponding selectivity are listed in Table 4.

Fig. 9 shows the query performance of the three pivot selection heuristics on the SISAP test suite using MVPT. FFT
turned out to be the worst for all the cases. The PCA method outperforms the incremental method for uniform vector
data with dimension 8, but is outperformed by the incremental method for NASA image and English dictionary. However,
the differences between the PCA and the incremental methods are marginal for all the cases except radius 2 of English
dictionary.
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Fig. 10. Query performance of three pivot selection methods on the SISAP test suite using pivot table.

6.4.3. On pivot table and the SISAP test suite
To further compare the PCA method and the incremental method, we run them on the SISAP test suite using pivot

table. The range query radii are fixed while the number of pivot varies. The results are shown in Fig. 10. We can see that
the incremental method slightly outperforms the PCA method for uniform vector while slightly outperformed by the PCA
method for NASA images. For English dictionary, the incremental method is slightly better while the number of pivots is
less than 50, and is slightly worse while the number of pivots is greater than 50. Again, the differences are marginal for
almost all the cases.

6.5. Estimate of intrinsic dimension

Finally, we show results of estimated intrinsic dimension on all the workloads with the three methods. Wherever possi-
ble, we vary the domain dimension to see how the estimates change. If a linear relationship is observed, we compute the
slope and intercept of the relationship by linear regression. For vector data, we use L1 and L∞ norms in addition to the L2

norm. The estimates are shown in Table 5. First, we can see that as domain dimensions increase, estimates given by all the
three methods increase linearly (one exception is the regression method and protein data). Therefore, we think all the three
methods are asymptotically accurate. Methods 1 and 2 have different values for slope and intercept for different data and
metrics. No generally applicable relationship can be drawn from Methods 1 and 2. Method 3, except in a few cases, always
gives d + 1 (q + 1) as the estimate. Thus, Method 3 is more consistent and stable.

Moreover, Method 3 almost always yields d + 1 for the vector data of dimension d, no matter what is the probability
distribution of the data and the metric. This is consistent with the observation that if the distances from an unknown vector
to d + 1 vectors are known, then the coordinates of the unknown vector can be computed accurately. The three methods
are consistent with each other for image data.

In our opinion, intrinsic dimension is an indicator of the difficulty of indexing. However, it is not a solo indicator.
In addition to intrinsic dimension, the alphabet size and the type of distance function are also indicators of difficulty of
indexing. Intrinsic dimension represents the level of the difficulty of indexing, or indexing complexity. It is analogous to
the exponent in the time complexity of algorithms. For example, intrinsic dimensions 1 and 2 in describing the difficulty of
indexing are analogous to O (n) and O (n2) in describing time complexity of algorithms.

7. Conclusions and future work

The “power” of metric-space indexing is the generality of the abstraction and encapsulation: just provide a distance
function. But, we (the community) have been powerless to do anything other than apply what we can make work with
respect to Rn . To date, this has been done opportunistically. The theorems in this paper reveal that within certain boundaries
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Table 5
Estimates of intrinsic dimension of three methods.

Workload Domain dimension Distance oracle Intrinsic dimension

μ2/2σ 2 Regression argmaxi(λi/λi+1)

Vector (uniform) D = 1–20 L∞ 1.72d − 1.81 0.73d + 0.88 d + 1 (d �= 3,4), 4, 7 (d = 3,4)
L1 D 0.75d + 0.84 d + 1
L2 1.41d − 0.71 0.78d − 0.72 d + 1

Vector (exponential) D = 1–10 L∞ 0.244d + 0.446 0.676d + 0.62 d + 1
L1 0.499d − 0.0006 0.737d + 0.482 d + 1
L2 0.427d + 0.113 0.72d + 0.534 d + 1

Vector (normal) D = 1–10 L∞ 0.644d + 0.559 0.858d + 0.325 d + 1
L1 0.875d + 0.002 0.863d + 0.32 d + 1
L2 0.989d − 0.145 0.872d + 0.305 d + 1

Texas 2 L∞/L1/L2 1.29/1.42/0.87 1.54/1.54/1.51 3
Hawaii 2 L∞/L1/L2 0.31/0.26/0.36 1.47/1.45/1.44 2
Protein q-gram q = 6–18 Weighted edit distance 2.46q + 2.32 −0.08q + 4.16 q + 1 (q < 18), 17 (q = 18)
DNA q-gram q = 9–18 Hamming distance 1.27q + 0.37 0.14q + 2.52 q + 1 (q < 18), 21 (q = 18)
Mass-spectra 40 000 Fuzzy cosine distance 0.62 1.23 2
Image 66 Linear combination of L-norms 5.26 4.85 5

we can in fact be methodical about this, and, for example, we now even understand how to exploit PCA in this context.
No surprise, the PCA inspired methods, while necessarily still heuristic, is comparable to heuristics inspired by ad-hoc
observations.

We believe the objective function of incremental sampling is worthy but the associated algorithm is computationally
expensive. Further, incremental sampling might be made more efficient by sampling from a set of corners instead of the
whole dataset. There are other dimension reduction methods for a vector space with annealing characteristics. We anticipate
more research along this direction.

By virtue of considering the complete pivot space, our work has drawn a direct parallel between distance-based indexing
and high-dimensional indexing. Both have to do dimension reduction and remove false positives. One may project a finite
metric space to a reduced dimension coordinate system, but no proper subset of the pivots can faithfully recreate the
geometry of the space. Thus, pivot selection results in the loss of information, typical of dimension reduction techniques.
Hence, dimension reduction is integral to indexing both finite metric spaces and high-dimensional data.

We show that the intrinsic dimension of data in a metric space can be estimated by the intrinsic dimension of the
complete pivot space. Thus, methods for vector spaces are now applicable to metric spaces. We have demonstrated how
a PCA-based method can be applied to estimate the intrinsic dimension of the metric space. More work on this topic is
expected.

Another interesting piece of future work is to determine the optimal number of pivots, and its relationship with the
intrinsic dimension.
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