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Abstract. Tree structure metric-space indexing methods recursively partition 
data according to their distances to a set of selected reference points (also called 
pivots). There are two basic forms of data partitioning: ball partition and  
General Hyper-plane (GH) partition.  Most existing work only shows their su-
periority experimentally, and little theoretical proof is found. We propose an 
approach to unify existing data partitioning methods and analyze their perfor-
mance theoretically. First, in theory, we unify the two basic forms of partition-
ing by proving that there are rotations of each other. Second, we show several 
theoretical or experimental results, which are able to indicate that ball partition 
outperforms GH partition. Our work takes a step forward in the theoretical 
study of metric-space indexing and is able to give a guideline of future index 
design. 
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1 Introduction 

Metric-space indexing, also known as distance-based indexing, is a general purpose 
approach to support similarity queries [9, 17, 29, 37]. It only requires that similarity is 
defined by a metric-distance function. Tree structure is one of the most popular me-
tric-space indexing structures. In their top-down construction, tree structure metric-
space indexing methods build index trees by recursively applying two basic steps: 
pivot selection and data partition. In pivot selection, only a small number of reference 
points (pivots), are selected from the database. The distances from data points to the 
pivots form a projection from the metric space to a low dimensional space, the pivot 
space [9, 24]. In data partitioning, data points are partitioned by their distances to the 
pivots, similar to the partitioning methods of multi-dimensional indexing [29]. 

Basically, there are two kinds of data partition strategies, ball partition and  
General Hyper-plane (GH) partition. However, most traditional methods are based on 
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heuristics. Theoretical analysis is usually overlooked. As a result, a large amount of 
these work only show their superiority from some carefully chosen datasets.  

To solve this problem, we propose an approach that is able to unify ball and GH 
partitions, and compare their index performance theoretically and experimentally.  

First, we show that ball partition and GH partition can be unified under the pivot 
space model [24] (Section 3.1), which was also proposed by our group. In the pivot 
space, the ball partition boundary is a straight line parallel to the axe, while GH parti-
tion boundary is a straight line with slope 1. That is, they are rotations of each other. 
Moreover, to make the analysis comprehensive, we leverage the extension versions of 
typical partition approach for comparison. In detail, we propose the Complete General 
Hyper-plane Tree (CGHT), which is an extension of the primitive form of GH  
partition, the GHT [33]. Results show that CGHT outperforms GHT. 

Second, we propose an approach to analyze and predict an index’s performance by 
means of the number of data points in a neighborhood (defined as r-neighborhood in 
Section 4) of the partition boundary. That is, less number of points in the r-
neighborhood means better query performance. Further, we show two theoretical and 
two experimental results, which indicate that ball partition outperforms GH partition 
in query performance. They are: (1) among all the rotations, we theoretically prove 
that ball partition has the minimal width of r-neighborhood. Although the number of 
points in the r-neighborhood, or the size of the r-neighborhood, is jointly dominated 
by width and data density along the width, a minimal width is an indication of smaller 
size; (2) if data follow normal distribution in the 2-dimensional pivot space, we theo-
retically prove that ball partition has smaller r-neighborhood size than GH partition; 
(3) we experimentally show that MVPT has smaller r-neighborhood size than CGHT 
on a comprehensive test suite; (4) we experimentally show that MVPT has better 
query performance than CGHT on the comprehensive test suite. 

The remaining of the paper is organized as follows. Related work is introduced in 
Section 2. In Section 3, we show how ball partition and GH partition are unified, fol-
lowed by 2 theoretical indications of MVPT’s better query performance than CGHT 
in Section 4. Section 5 elaborates the two experimental indications of MVPT’s better 
query performance. Finally, conclusions and future work are discussed in Section 6. 

2 Related Work 

Ball partition and GH partition are the two basic kinds of data partition strategies in 
tree structure metric-space indexes. 

Ball partition considers pivots one at a time, e.g. Vantage Point Tree (VPT) [33, 
36] and Multi-Vantage Point Tree (MVPT) [5]. That is, data is first partitioned ac-
cording to their distances to the first pivot. Each partition boundary forms a circle. 
Then, each partition area is further partitioned according to the data distances to the 
second pivot. Such process repeats until every pivot is used. For example, given k 
pivots and m partitions for each pivot, the total number of partitions is mk. 

GH partition is similar to clustering. Each data point is assigned to its closest pivot 
(or cluster center). In other words, the distance difference from a data point to two 
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pivots is considered, and the metric space is partitioned by a surface equidistant from 
the two pivots. General Hyper-plane Tree (GHT) [33], GNAT [6] and SA-tree [28] 
belong to GH partition. 

The BSP [16], M-Tree [9] and slim-tree [10] family also adopt the GH partition 
with multiple pivots when data is partitioned. However, each partition is represented 
as a ball, i.e. a center and a covering radius, similar to ball partition. 

3 Unification of Ball Partition and GH Partition 

In this section, we first give a brief introduction to our theoretical background, the 
pivot space model. Then, we consider VPT and GHT, the primitive forms of ball par-
tition and GH partition. However, VPT has only one pivot while GHT has two pivots. 
To make the numbers of pivots and partitions equal as a fair comparison, we propose 
the Complete General Hyper-plane Tree (CGHT). Finally, we compare CGHT with 
MVPT, with same numbers of pivots and partitions, and unify them in the pivot 
space.  

3.1 Theoretical Background: The Pivot Space Model 

This subsection presents a brief introduction to the pivot space model. The readers 
can refer to [24] for more details. 

 

Fig. 1. In a metric space, the ball of a range query is covered by a square in the pivot space 

Some notations that will be used in the paper are listed as follows. Let Rm denotes a 
general real coordinate space of dimension m. Let (M, d) be a metric space, where M 
is the domain of the space, and d is a metric distance function. Let S = {xi | xi∈M, i = 
1, 2, …, n}, be the database, and xi is the data point in the database, n ≥ 1. S is a finite 
indexed subset of M.  Let P = {pj | j = 1, 2, …, k} be a set of k pivots. P ⊆ S.  
Duplicates are not allowed.  

There are three steps to answer a range query R(q, r) in a metric space [24]: 

Step 1: (1) Map the data into Rk. (2) Map the query object into Rk. (3) Determine a 
region in Rk that completely covers the range query ball. 

Given the set of pivots, each point x in S can be mapped to a point xp in the non-
negative orthant of Rk.  The j-th coordinate of xp represents the distance from x to pj: 

xp= (d(x, p1), …, d(x, pk)), 

Pivot space 

0 d(p1, x) 

d(p2,x) 

2r 

d(p1,q) 

d(p2,q) 

2r 

q 
Metric space 

r 
q
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The pivot space of S, FP,d(S), is defined as the image set of S: 

FP,d(S) = {xp | xp = (d(x,p1), …, d(x,pk)), x∈S}. 

The image shape of a range query ball R(q, r) in a general metric space is not clear 
in a corresponding pivot space. However, it can be proved, from the triangle inequali-
ty, the image of the query ball is completely covered by a hypercube of edge length 2r 
in the pivot space [9]. Actually, the hypercube is a ball of radius r in the new metric 
space specified by the pivot space and the L∞ distance.  We call the hypercube the 
query cube. Fig. 1 shows an example where 2 pivots are selected [24].  All the points 
in the query ball are mapped into the query square in the 2-d pivot space plane. Points 
outside the square can be safely discarded according to the triangle inequality.  

 

Fig. 2. GH partition and extensions 

Step 2: Exploit multi-dimensional techniques to obtain all the points in the region 
determined in Step 1. 

Fundamentally, Step 2 uses divide-and-conquer, based on the data coordinates. 
Many partition methods in multi-dimensional indexing can be applied here. For ex-
ample, MVPT’s partition is similar to a kd-tree [2]. 

Step 3: For each point obtained in Step 2, we compute its distance to the query  
object to eliminate the false positives. 

p1 
 

p2 

(a) GH partition in metric space (b) GH partition in pivot space 

(c) Extensions to GH partition: (1) non-
zero intercept; (2) multiple partitions (d) Extensions (3): grid partition 
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3.2 The Complete General Hyper-plane Tree 

We start with the primitive form of ball partition and GH partition for comparison. 
VPT [33, 36] is the primitive form of ball partition. It first selects a pivot, and then 
draws a circle centered at the pivot to partition the data. The radius of the circle is 
chosen so that the partitioning is balanced. GHT [33] is the primitive form of GH 
partition. It first selects two pivots. Then it uses a hyper-plane, which is equidistant to 
the two pivots, to partition the data. Obviously, VPT and GHT use different number 
of pivots. Since GH partition uses at least two pivots, we consider Multiple Vantage 
Point Tree (MVPT) [5] instead of VPT as a representative of ball partition methods. 
MVPT first selects a few pivots. Then data is partitioned based on their distances to 
the first pivot. Such partitioning repeats until all the pivots are used. 

A MVPT with 2 pivots has the same number of pivots with a GHT. However, at 
each index node, a MVPT with 2 pivots generates at least 4 partitions (2 by 2), while 
a GHT generates only 2. To make the number of partitions equal, we extends GHT 
and propose the CGHT, which has the same numbers of pivots and partitions with 
MVPT with 2 pivots. 

In the following, for simplicity, we assume only two pivots are selected, k = 2. Let 
d1 and d2 be the distances from a data point to the two pivots, respectively. 

Given the two pivots, a GH partition separates the data with a hyper-plane formed 
by points equidistant to the two pivots (Fig. 2 (a)) [33]. In the pivot space, the parti-
tion line is specified by d1 - d2 = 0. Its slope is 1 and its intercept is 0 (Fig. 2(b)).  
Examining Fig. 2(b), we can extend GHT as follows.  

Extension (1): use non-zero intercept (Fig. 2(c)). 
Extension (2): use multiple partitions (Fig. 2(c)). 
Extension (1) has been studied by Zhang and Li, and Lokoc and Skopal [23, 38]. 

In GHT, distances of each data point to two pivots are computed.  So the two  
variables, d1 and d2, are known.  However, only one combined variable, d1 - d2, is 
exploited in partitioning.  In statistics, if d1 and d2 are two independent random va-
riables, d1 - d2 and d1 + d2 are deemed independent [8].  Although d1 and d2 might not 
be actually independent, we believe that variable d1 + d2 is able to provide additional 
pruning ability without extra distance calculations.  This idea leads to Extension (3): 

Extension (3): use d1 + d2 to partition. 

 

Fig. 3. Internal node structure of CGHT 

p1: pivot 1 
p2: pivot 2 
plus_max[]: array of all children’s upper bounds of d1 + d2 
plus_min[]: array of all children’s lower bounds of d1 + d2 
minus_max[]: array of all children’s upper bounds of d1 - d2 
minus_min[]: array of all children’s lower bounds of d1 - d2 
children[]: array of pointers to all children 
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Fig. 2 (d) shows the case that all the 3 extensions are combined. As Extension (3) ex-
ploited all the information provided by the two pivots, we name this new structure the 
Complete General Hyper-plane Tree (CGHT). Here “Complete” means the two distance 
computation to the two pivots are taken into full use. That is, during the search proce-
dure, in addition to pruning based on one variable d1 - d2, one can also do pruning  
base on another variable, d1 + d2. The structure of one CGHT internal node is shown in 
Fig. 3. The structure of one CGHT leaf node is the same as that of GHT [33]. 

 

Fig. 4. Steps to bulkload a CGHT 

Bulkloading of CGHT follows the general steps in constructing a pivot-based index 
structure (Fig. 4). First, two pivots are selected, using any pivot selection algorithm.  
Second, values of d1 + d2 and d1 - d2 are computed for each data point.  Third, most 
data partition algorithms (from the three categories of metric space indexing methods) 
can be applied to partition the data, based on d1 + d2 and d1 - d2 values.  These steps 
are run recursively on each partition generated. 

 

Fig. 5. Range query steps of CGHT 

Range query algorithm of CGHT is summarized in Fig. 5. The correctness of the 
pruning step (3), can be proven by the triangle inequality. 

3.3 Unification of CGHT and MVPT 

The CGHT partition lines with slope 1 in the pivot space (Fig. 2(d)) are actually 
hyperbolas in metric space (Fig. 6(a)), while those with slope -1 are actually ellipses.  
For the MVPT partition circles in the metric space (Fig. 6(b)), in the pivot space (Fig. 
6(c)), they are actually straight lines parallel to the axes. 

Comparing Fig. 2(d) with Fig. 6(c), it is obvious that one can turn MVPT into 
CGHT by a 45o rotation, or vice versa. 

Now ball partition and GH partition are unified. A following reasonable question  
is what rotation angle is optimal with respect to query performance. We show 2  

(1) if leaf node, do the GHT leaf node search; otherwise 
(2) compute d1 + d2 and d1 - d2 values for the query object 
(3) for each child i,  
if not [(plus_min[i]–2r ≤ d1+d2 ≤ plus_max[i]+2r) and 

(minus_min[i]–2r ≤ d1–d2 ≤ minus_max[i]+2r)] 
        then this child can be pruned. 

(4) recursively search child that cannot be pruned in (3). 

(1) if data set is small, construct a leaf node; otherwise: 
(2) pivot selection 
(3) compute d1 + d2 and d1 - d2 for all data points 
(4) run clustering partition on d1 + d2 and d1 - d2 values. 
(5) recursively bulkload every partitions generated in (4). 
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theoretical indications of ball partition’s better query performance in Section 4, and 2 
experimental indications in Section 5. 

 

Fig. 6. CGHT and MVPT partitions 

4 Theoretical Comparison of Ball Partition and GH Partition 

In this section, we analyze ball partition and GH partition’s query performance theo-
retically. We first define the r-neighborhood of the partition boundary, the number of 
points in which is a dominant factor of the query performance. Then, the total number 
of points in the neighborhood (size of r-neighborhood) is investigated for both ball 
partition and GH Partition from two aspects: (1) width of r-neighborhood, a domina-
tive factor of r-neighborhood size; (2) r-neighborhood size for a particular data distri-
bution, 2-dimensional normal distribution, in the pivot space. Our results indicate that 
MVPT outperforms CGHT. 

4.1 r-Neighborhood of Partition Boundaries 

Since the key of tree structure indexing is to prune as much data as possible, the prun-
ing power is one of the dominant factors of query performance. Given a range query 
R(q, r), if q is so close to a partition boundary that the query ball centered at q with 
radius r intersect the boundary, either sides of the boundary can be pruned, leading to 
low pruning power, or low query performance. To increase the pruning power, one 
has to lower the probability that queries fall too close to partition boundaries. As a 
result, we define the “r-neighborhood”. In plain terms, an r-neighborhood is the 
neighborhood of a partition boundary, such that a range query R(q, r) may intersect 
the boundary if q falls into the r-neighborhood. 

Definition 1. The r-neighborhood of a partition boundary L, denoted as Nr(L), is a 
neighborhood of L. If a query object q falls into it, the range query ball centered at q 
with radius r intersects L. 

If q falls into Nr(L), partitions comprising both halves of the space defined by L have 
to be searched.  If q does not fall into Nr(L), only the partition on the side of L ,where 
q falls into, need to be searched. The partition on the other side can be pruned. 

Average query performance can be improved by reducing the probability of queries 
falling into r-neighborhood. Assume queries have the same distribution as the data 
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points in the database, the total number of data points in the r-neighborhood, or r-
neighborhood size, is critical to query performance. That is, the smaller the  
r-neighborhood size, the better the query performance. 

R-neighborhood is also useful when redundancy is introduced in the index tree. To 
guarantee that only one partition will be further considered at each level of the index 
tree, one can duplicate the r-neighborhood of the partition boundaries [14].  

4.2 Minimal Width of the r-Neighborhood 

The r-neighborhood size, a dominant factor of query performance, is jointly deter-
mined by the width of the r-neighborhood and the density of data along the width. 
Since density is determined by data distribution, it is impossible to know it when de-
sign the index. Therefore, in this subsection, we find out the minimal width of r-
neighborhood among all rotations of ball partition and GH partition. 

As discussed in Section 3, ball partition and GH partition boundaries are straight 
lines in 2-d pivot spaces. Let line L: y = ax be an arbitrary partition line rotated from 
ball partition or GH partition (without losing generality, the constant intercept is omit-
ted). We name such type of partitioning linear partition in the pivot space. The shape 
of r-neighborhood of linear partition in the pivot space is given by Theorem 1. 

Theorem 1. The r-neighborhood of line L: y = ax, 0≤a is Nr(L): |y-ax| ≤ RL(r), where 
RL(r) is a real valued function of r and L. 

In other words, Theorem 1 states the fact that the r-neighborhood of linear partition is 
delimited by two lines, which are parallel and with the same distance to the linear 
partition line. The proof is straightforward and is omitted. 

 

Fig. 7. R-neighborhood of hyper-plane partitions 

0 d(p1, x) 

Nr(L): |x-μ|≤ r, RL(r) = r 

L: x = μ 

2

(a) Special case: L: x = μ 
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r 
q
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In the following, we discuss the value of RL(r), and the width of Nr(L). We start 
from two special cases, and followed by the general cases. 

Case 1: L: x = μ 
This is the ball partition. From simple analysis (Fig. 7 (a)), the r-neighborhood of 

L: x = μ is: Nr(L) : |x-μ| ≤ r, RL(r) = r, and the width of Nr(L) is 2r. 
Case 2: L: y = x 
This is the GH partition.  According to the pivot space model, the query ball in 

metric space is covered by a cube in the pivot space. It can be observed (Fig. 7 (b)) 
that the r-neighborhood of L: y = x is: 

Nr(L): |y-x| ≤ 2r, RL(r) = 2r, and the width of Nr(L) is 2 r.  
Case 3: General case: y = ax 

Because of the symmetry, we only need to consider the case that 0<a<1. The result 
is stated in Theorem 2. 

Theorem 2. Let L: y = ax, 0<a<1, then RL(r) = (1+a)r, and the width of Nr(L) is  
2 r. 

Theorem 3 is illustrated in Fig. 7(c).  It can be proved with basic geometry. 
The following corollary is correct due to the fact that 0≤a.  

Corollary 1. The width of Nr(L) is minimized to 2r when a = 0 or ∞, i.e. the partition 
line is parallel to the axes, or ball partition.  The width of Nr (L) is maximized to 2
r, when a=1, i.e. the partition line has 45˚ angle to the axes, or GH partition. 

According to Corollary 1, ball partition is optimal among its rotations with respect to 
the width of r-neighborhood. Although the r-neighborhood size is determined by both 
the width and the density, a smaller width is still an important sign of fewer points in 
the r-neighborhood, thus better query performance.  To further investigate the r-
neighborhood size, next, we mathematically calculate it for a particular data distribu-
tion, 2-dimensional normal distribution, in the pivot space. 

4.3 r-Neighborhood Size of 2-d Normal Distribution in Pivot Space 

Let us consider the case where data is normally distributed in a 2-d pivot space  
(Fig. 8). For simplicity, let the joint distribution of d1 and d2 to be N(0, 1, 0, 1, -ρ). 
That is, the marginal distribution of both d1 and d2 is the standard normal distribution, 
and correlation coefficient is –ρ, 0≤ρ≤1. 

 

Fig. 8. Example: normal distribution in 2-d pivot space 
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In the following, we calculate the numbers of points in the r-neighborhoods of ball 
and GH partitions, denoted by |NLb(r)| and |NLG(r)|, respectively.  Let PLb(r) and 
PLG(r) be the probability that the data falls into the r-neighborhoods of ball and GH 
partitions. It is sufficient to compare PLb(r) with PLG(r). 

Theorem 3. PLb(r) ≤ PLG(r), and they equal when ρ =1. 

Proof: In statistics, it have been proved that for normal distribution N(0, 1, 0, 1, -ρ), 
the projected distribution on the first principle component (perpendicular to the GH 
partition line in Fig.8(a)) is N(0,1+ρ), normal distribution with variance 1+ρ [20]. 

From Theorem 2, the widths of r-neighborhoods of ball and GH partitions are 2r and 
2 r, respectively. Therefore: 

PLb(r) = P(|x| ≤ r | x~N(0,1)), and PLG(r) = P( |x| ≤ r, | x~N(0, 1+ρ)) 
After normalization: PLG(r) = P( |x| ≤ r, | x~N(0, 1)) 

Since 0≤ρ≤1, we have1≤ , and the equality holds when ρ = 1. 

That is, PLb(r)≤ PLG(r), and the equality holds when ρ=1.                         □ 

In conclusion, for 2-d normal distribution in the pivot space, better query perfor-
mance can be expected from ball partition than GH partition since there are fewer 
points in the r-neighborhood of ball partition boundary than those of GH partition.  

5 Empirical Results 

In this section, we present experimental results to indicate that ball partition outper-
forms GH partition. We first introduce a comprehensive test suite we use, then the  
r-neighborhood sizes of both partitions on the test suite, and finally the range query 
performance of both partition methods on the test suite. 

Table 1. Summary of test suite 

Workload Db. size Distance metric Dom.dim. radius 

Uniform vector 1Million 

L2 norm 

2, 8 0.02/0.3 

Texas 36463 2 0.02 

Hawaii 9290 2 0.02 

Protein 100k Weighted edit distance 18 2 

DNA 100k Hamming distance 6 2 

Image 10,221 L-norms 66 0.02 

English dictionary 69069 Edit distance N/A 1 

NASA image 40150 L2 norm 20 0.03 

5.1 Test Setup 

Our test data consists of the MoBIoS test suite [27] and the SISAP test suite [31]  
(Table 1). The MoBIoS test suite consists of synthetic vector data (dimensions 2 and 

2

2

2 / (1 )ρ+

2 / (1 )ρ+
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8), biological data, real world vector data and an image dataset. Different dimensions 
of the synthetic vector data have independent identical uniform distributions. Two 
types of biological data are considered: (1) amino-acid sequence fragments of the 
yeast proteome with weighted-edit distance based on the metric PAM substitution 
matrix [36]; (2) the DNA sequence fragments of the Arabidopsis genomes with 
Hamming distance. The real world vector data consists of the US cartographic boun-
dary data of Texas and Hawaii. The images are represented by 66 dimensional feature 
vectors with a linear combination of L1 and L2 norms. Two datasets from the SISAP 
test suite [31] are involved: the English dictionary uses the edit distance. The NASA 
images are represented by 20-dimensional vectors with the Euclidean distance. 

The sizes of the databases are all 100k, except for uniform vector, which is 1 mil-
lion, and those small workloads, where only limited amount of data is available.  
Although the data volume is not huge, it is large enough to clearly show the trends. 

The number of pivots is 2 for all cases. Adding more pivots will increase the di-
mension of the pivot space. In Section 3, we have shown that ball partition and GH 
partition are rotations of each other. The only difference between them is the angle of 
rotation. Follow this idea, in the multiple-pivot scenario, one can still rotate the parti-
tion boundary of ball partition to get GH partition, or vice versa. This transformation 
is similar to the linear transformation of bases of vector space in linear algebra.  
Therefore, we limit our number of pivots to 2 for simplicity. 

Two pivot selection heuristics are examined. One is Farthest-First-Traversal (FFT) 
[18], which selects corner of data as pivots. The other is a PCA-based heuristic, which 
has been shown to perform well generally [24]. 

For each pivot, data is partitioned into 3 parts. Thus, the total number of partitions 
is 9. Two data partition heuristics are examined. One is balanced partition [9], and the 
other is Clusteringkmeans, which derives the partition from k-means clustering [25]. 
Please note that GHT only adopts the balanced partition. 

 
Fig. 9. Percentage of data to further examine at the index root 

For each dataset, combination of pivot selection and data partition heuristics, statis-
tics with a number of range query radii are collected.  However, to save space, only 
the results of one representative radius are presented for each dataset and combination 
of heuristics. Those representative radii are listed in Table 1. For each dataset, 5000 
data objects are chosen sequentially from the beginning of the dataset files as range 
query objects. The experimental results collected are averaged over queries.  
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We first compare the r-neighborhood size of MVPT, GHT and CGHT, then the 
range query performance.  

5.2 Number of Points in r-Neighborhood 

This subsection examines the index performance only at the tree root level, and the 
whole index is examined in the next subsection, based on range query performance. 

In the presence of multiple pivots, a query in the r-neighborhood might lead to 
more than 2 partitions being further search.  Therefore, instead of simply counting 
the number of points in r-neighborhood, we collect the average percentage of data to 
further examine, or the data that cannot be pruned, at the index root, as a more  
accurate indicator of the query performance. 

 

Fig. 10. Query performance of MVPT, CGHT and GHT 
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Fig. 9 shows the percentage of data cannot be pruned, or pruning power, at the in-
dex root level. Obviously, CGHT has more pruning power than GHT in all the cases, 
indicating a significant improvement of CGHT over GHT. Furthermore, MVPT has 
more pruning power than CGHT for almost all the cases. The only two exceptions are 
for Texas data (FFT, Balance) and 2-dimensional vector (PCA, Clustering), where the 
difference is neglectable.  

5.3 Range Query Performance 

Since distance evaluation in a metric space is usually costly, to focus on the algorith-
mic behavior, we use the number of distance calculations normalized over dataset 
sizes, which is implementation independent, as a performance measure. 

The range query performance of MVPT, CGHT and GHT are listed in Fig. 10.  It 
is clear to see that MVPT outperforms CGHT and GHT.  The differences are signifi-
cant in most cases. Moreover, the performance is more than doubled in several cases. 

In the total 36 comparisons of CGHT and GHT, CGHT outperforms GHT in 28 
cases.  However, there are 8 of 36 cases that GHT outperforms CGHT, while the 
differences are significant in a few cases. We would like to point out that it does not 
prevent one from concluding that MVPT generally outperforms CGHT or GHT, or, in 
other words, ball partition generally outperforms GH partition.  

6 Conclusions and Future Work 

In this paper, we unify data partition methods of tree structure metric-space indexes 
under the pivot space model, and propose an approach to compare and predict query 
performance through r-neighborhood size. Theoretical and experimental results indi-
cate that ball partition outperforms GH partition. 

The contributions of our paper are as follows: 

(1) Propose the Complete General Hyper-plane Tree which takes full use of the pi-
vots and outperforms GHT. 

(2) Unify ball partition and GH partition in the context of the pivot space model. 
(3) Show that ball partition possesses the optimal rotation angle with respect to the 

width of r-neighborhood. 
(4) Prove that ball partition has fewer points in r-neighborhood than GH partition 

for 2-d normal distribution in the pivot space. 
(5) Show that ball partition has fewer points in r-neighborhood than GH partition, 

based on our test benchmark. 
(6)  Show that MVPT outperforms CGHT by experiments, which consists with the 

theoretical analysis. 

The methodology developed in this paper forms a basis for resolving the merits of 
the different classes of metric-space indexing algorithms. 

The pivot space model establishes a bridge connecting metric-space indexing and 
high-dimensional indexing. It also lays a foundation for theoretical analysis. In the 
future work, we plan to take advantage of the fruitful results along the much longer 
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research history in high-dimensional indexing to study metric-space indexing.  
We believe some of the dimension reduction and data partition approaches in  
high-dimensional indexing may benefit to metric-space indexing. Moreover, we have 
only considered linear partition so far. Non-linear partitioning deserves more atten-
tion. Actually, there are already some efforts on this topic, such as Li and Zhang's 
Haperplane tree [22]. 
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