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Abstract 

Uhlmann, J.K.. Satisfying general proximity/similarity queries with metric trees, Information Processing Letters 40 (1991) 
175-179. 

Divide-and-conquer search strategies are described for satisfying proximity queries involving arbitrary distance metrics. 
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Introduction proximity queries involving arbitrary distance 
metrics. 

A great variety of practical problems [5,6] re- Many data structures have been developed to 
quire the efficient identification of elements from satisfy certain classes of proximity queries for 
a finite set of points that are in some defined vectors having d arbitrary real-valued elements. 
proximity to a given query point, where an effi- Most of these data structures are based on the 
cient algorithm here is loosely defined as one. that paradigm of recursive hyperplane decomposition. 
avoids the examination of every point in the set. The kd tree, for example, is constructed by recur- 
The precise meaning of “proximity” varies from sively selecting one of the coordinates and parti- 
problem to problem. Problems involving spatial tioning the dataset into the subset of vectors 
points, for example, often measure proximity in whose values for the chosen coordinate are less 
terms of Euclidean distance. Many correlation than the median value and the subset whose 
and assignment problems define proximity in values for the coordinate are not less than the 
terms of a distance measure in permutation space median [l]. The methods for searching the tree 
[3], and numerous metrics arise in areas such as are then closely analogous to those used to search 
pattern recognition and network optimization. ordinary single-dimension binary trees. This data 
The extensive literature on data structures for structure requires storage linear in the size of the 
representing multidimensional points generally dataset and usually displays good query-time per- 
has been concerned only with problems involving formance when the number of dimensions is 
proximity queries in which the query regions are small. When the number of dimensions exceeds 
approximately convex, or can be decomposed into O(log IZ), assuming the tree is balanced, no se- 
a relatively small number of approximately con- quence of partitions can discriminate on every 
vex regions. In this paper approaches are de- coordinate. In other words, a search of the tree 
scribed for efficiently satisfying a large class of can only determine proximity based on a subset 
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of the coordinates. This problem can be partially 
alleviated by judicious selection of the partition- 
ing planes. Unfortunately, techniques for select- 
ing (and even defining) partitioning surfaces in 
general metric spaces have not been widely stud- 

ied. 

all decompositions 

Recall the definition of a metric distance func- 
tion d(x, y): 

(iI d(x, y) = d(y, XI, 
(ii) 0 < d(x, y I < 03, x Z y, 

(iii) d(x, XI = 0, 
(iv) d(x, y) G&Y, z) +d(z, y) (triangle in- 

equality). 

NIost commonly used distance and similarity 
measures between objects satisfy the above condi- 
tions ‘. Consider for example &v, y) giving the 
minimum time required to travel between points 
x and y. Assuming there are no one-way streets, 
condition (i) is satisfied. As long as it is possible 
to travel from x to y, condition (ii) is satisfied. 
Condition (iii) is trivially satisfied. And condition 
(iv) is always satisfied since at least equality is 
assured by traveling from x to z and then from z 
to y. A query requiring the identification of the 
set of points within some travel time of a given 
point defines a query region that is not generally 
convex. Specifically, long and winding fingers may 
follow major thoroughfares while shorter ones 
extend along other avenues. Thus, data structures 
that efficiently support proximity queries only 
when the query region is approximately convex 
may fail to achieve any appreciable performance 

’ Many other distance-like measures can be transformed to 
metrics. For example, the pseudodistance measure d(x, y) 
= (x - y)’ fails to satisfy the triangle inequality, but 
d’(x, y)=fi(x, yv) transforms it to the Euclidean metric. 
Thus. most proximity queries for ti can be transformed to 
queries for metric ti’ that yield the same solution set. 
Notable exception.5 include many distance measures be- 
tween sized objects (e.g., spatial objects, sets, probability 
distributions, etc.). The data structures described in this 
paper can be enhanced to process sized objects using tech- 
niques applied in [9]. 
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advantage over brute force. A data structure that 
exploits local features of the metric is required. 

Given a finite set S of 11 objects with metric 
d( Si, S,), Si, S, E S, a ball decomposition [7] A? is 
a metric tree constructed from S, using 
O(n log n) distance calculations, by the follow- 
ing: 

1. If 1 S 1 = 0, then create the empty tree 68 = nil. 
2. Otherwise: 

Let 9.V be an arbitrary object from S, 
a,\ + median of {d(Bx, y) Wy E S), 
&?,,ft +- metric tree of {S; 1 d(&$, Sj) G%&, Si 
+gJ, 

bright +- metric tree of {Si I d(Bx, Si) &$,J. 

Basically, the construction process consists of 
selecting one of the objects, ~8’~) and finding the 
median distance 9m such that half of the objects 
are within the metric ball of radius 9,,, about 
&$. The set is then partitioned by ~8~ and the 
process is recursively applied. (The redundant 
conditions, “ < ” and “ 2 ,” assure balance when 
the median value is not unique. This is accom- 
plished by assigning each element on the parti- 
tion to one of the subtrees in an arbitrary, but 
balanced, fashion. A routine for searching the 
tree must then use the same redundant inequali- 
ties.) 

This decomposition is interesting because it 
requires nothing to be known about the objects 
other than their pair-wise distances. Thus, it is 
appropriate for applications dealing with sets of 
objects whose topological relationships are not 
characterized analytically. For example, many 
practical routing problems involve points whose 
pairwise distances are determined by a function 
evaluating the minimum cost to traverse from one 
point to another (e.g., over various types of ter- 
rain). Having established that the distances satisfy 
the metric conditions, the set of points within 
distance Y of a point ~7 can be identified from the 
metric tree 9 as follows: 

1. If d(BA., ~9 \<I-, then BX is an element of the 
desired set . 

2. If d(Bvv, r4 + r >,A?,,,, then recursively search 

gright - 
If d(Bx, r4 +Bm G r, then every point in &8&, 
is an element of the desired set. 
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Else, if d(Q$, C) - Y <L-Z&, then recursively 
search Sleft. 

More generally, the set of objects in an arbi- 
trary region ,x can be identified from 95’ as fol- 
lows: 

1. If ~3’~ is in x, then BX is an element of the 
desired set. 

2. If x intersects the region associated with 

%ght? then recursively search ~~ighr, 
If the ball associated with aleft is entirely 
within x, then every point in Bleft is an ele- 
ment of the desired set. 
Otherwise, if x intersects the ball associated 

with gleft, then recursively search ~3’~~~~. 

Ball decompositions often provide good 
query-time performance because their use of 
dataset elements in defining partitions tends to 
allow them to exploit distribution features. Un- 
fortunately, for uniformly distributed points in 
common metric spaces such as Euclidean, Man- 
hattan, etc., the surface area associated with ball 
partitions tends to be greater within the convex 
hull of the points in the dataset than the amount 
of area associated with the intersection of parti- 
tioning planes and the interior of the hull. In 
other words, under these condititions searches of 
ball decompositions will be more expensive be- 
cause query regions are more likely to intersect 
the partitions. 2 This suggest that a generaliza- 
tion of the hyperplane decomposition approach 
to other metric spaces might also provide supe- 
rior performance. 

Generalized hyperplane decompositions 

One of the most attractive features of the ball 
decomposition is that it can be computed given 

’ In the case of binary data using the Manhattan metric, 
however, every point represents a vertex of a multidimen- 
sional hypercube. Every ball partition is therefore centered 
at a vertex and will intersect the space identically to a 
hyperplane. Tests reveal that only lo-100 distance calcula- 
tions are required to satisfy small-radius queries (having 
solution sets of approximately 5 vectors) on datasets of size 
1K to 16K randomly selected binary vectors of lengths 1 K 
to 16K, K = 1024 [8]. 

only that the distance measure satisfies four rela- 
tively modest conditions (and even these condi- 
tions can be further relaxed with minor enhance- 
ments to the algorithm). How to define hyper- 
plane partitions, un !ike ball partitions, is not ob- 
vious from such limited information. A definition 
that coincides with intuitive, as well as most ana- 
lytic notions of hyperplanes is the following: 

Definition. A generalized hyperplane (GH) is de- 
fined by two points p, and p2, p, zp,, and 
consists of the set of points q satisfying d(q, p,) 
= dtq, p2). A point x is said to lie on the p,-side 
of the plane if d(x, p,) < d(x, p2). 

Like ball partitions, GH partitions tend to 
exploit distribution features when defined by ran- 
domly selected points from the dataset. For ex- 
ample, a set of points distributed on a line in 
d-dimensional Euclidean space will generate GH 
partition planes orthogonal to that line. An ad- 
vantage of GH over ball decompositions is that 
the latter are strongly static data structures while 
the former are not. In particular, a ball partition 
consists of a center point and a radius that is 
determined by examining each point in the dataset 
and identifying the median distance from that 
center point. Without knowledge about the distri- 
bution extent of the points to be processed, there 
can be no strategy for dynamically selecting radii 
that can be expected to produce an approxi- 
mately balanced data structure. 3A heuristic sam- 
pling argument, however, suggests that GH parti- 
tions usually can be expected to produce approxi- 
mately balanced decompositions because they are 
determined by randomly sampled points (the pairs 
of defining points) that they partition into equally 
sized subsets (each partition separates its two 
defining points). Calculating the expected devia- 
tion from perfect balance, of course, requires 
additional distribution and metric information. 

3 However, dynamic techniques have been developed that 
yield good antortized performance for insertions and dele- 
tions in general tree structures. These approaches perform 
no balancing until a subtree becomes sufficiently unbal- 
anced, whereupon it is ch>mpletely reconstrarcted by using 
the static construction algcrithm [4]. 
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The dynamic insertion of a point p into a 
GH-based tree ;;Tc can be effected by the function 
Insert(Z, p) defined as follows: 

If Z is empty, then create and return a node 
X with zV = p and FY, Fieft, and Xright = nil, 
where TV and X,, are the two points defining 
the partition and S”icct and Fright are the two 
subtrees. 
If X;, = nil, then return R’ with r,, = p. 

If d( p, TV) 6 d(p, ;V,), then return X with 

cleft = Insert(R+,,, , p 1. 

Return jr with Z’,eft = Insert(CP;ieh,, pl. 

The advantages of GH over ball decomposi- 
tions in the dynamic case are gained at a cost. 
Without knowing that the distance measure de- 
fines a linear space, for example, it is not gener- 
ally possible to translate generalized hyperplanes 
to assure balanced decompositions even in the 
static case. 

Assume a set of points characterizes a region 
such that a point in the region lies on a given side 
of a GH partition if and only if one of the 
characterizing points lies on that side of the parti- 
tion. (In Euclidean space, for example, a polyhe- 
dral region would be fully characterized by its 
vertex points.) The set of points in a GH decom- 
position X within a region characterized by a set 
of points 4 can be found simply by comparing 
each element of 4 to the partition associated 
with each visited node of X. A branch of the tree 
is then examined if and only if an element of $J 
lies on the side of the partition, associated with 
that branch. In many cases, an analytic character- 
ization of the search region can avoid the need 
for a set 4 and can permit the comparison step to 
be computed more efficiently. In general, how- 
ever, the set of queries that can be satisfied by 
GH-decompositions is severely limited by the fact 
that, without additional information, only points 
can be compared to GH partitions. For example, 
given only a blackbox distance function, two points 
defining a partition plane, and a ball of radius I 
about a point X, it is not possible to determine 
whether the ball about _X intersects the partition 
plane. Thus GH decompositions are less general 
than ball decompositions. In practice, however, it 

is rare for so little information to be known as to 
preclude the use of G 

n summary, metric trees extend the divide- 
-conquer paradigm to search problems in ar- 

bitrary metric spaces. Problem areas in which 
such general techniques can be valuable include 
pattern recognition and a variety of network opti- 
mization applications. Although these data struc- 
tures usually provide query-time performance that 
is significantly better than brute force, they can- 
not guarantee such performance for all queries in 
all metric spaces. For example, worst-case perfor- 
mance for ball decompositions can be demon- 
strated by a set of points distributed on the 
surface of the unit ball and a query asking for the 
set of points strictly within the unit ball. In this 
case both the query region and its complement 
will be intersected by every partition and every 
point therefore will require examination. (This 
performance is analagous to that of kd trees for 
deviously selected half-space queries 123.) In prac- 
tice, however, the potential for improved 
average-case performance usually justifies the ap- 
plication of metric trees instead of brute force. In 
special cases, of course, it is possible to establish 
superior worst-case bounds for metric trees. In 
the case of range queries in the L, metric, for 
example, virtually all of the analyses conducted 
on kd trees can also be applied to GH decompo- 
sitions. 

eferences 

[I] J. Bentley, Multidimensional binary search trees for asso- 
ciative searching, Cornm. ACM 18 (1975) 509-515. 

[21 H. Edelsbrunner, Algorithms itI Combitratorial Geometry 
(Springer, Berlin, 1987) Chapter 14. 

131 D. Golenko-G’ b mz mg, Metrics in the permutation space, 
Appl. Math. Lett. 4 (2 j i 199 1) 5-7. 

[4] K. Mehlhorn, Mrritidit?lerlsionaI Searching and Computa- 
riotzal Geometry (Springer, Berlin, 1984) 37-38. 

[51 F. Preparata and M. Shamos, Computational Geometry: 
An htroderctior~ (Springer, New York, 1985). 

161 H. Samet, The Des&l and Analysis of Spatial Data Struc- 
tures (Addison Wesley, Reading, MA, 1990) Preface. 

178 



Volume 40. Number 4 INFORMATION PROCESSING LETTERS 25 November 1991 

[7] J. Uhlmann, Metric trees, Appl. Math. Lett. 4 (5) (1991). 
i8i J. Uhlmann, Real-time decision support with metric trees, 

in: Proc. Command and Control Decision Aids Conf., 
Washington, DC, July, 1991. 

[9] J. Uhlmann, Adaptive partitioning strategies for ternary 
tree structures, Pattern Recognition Letr. 12 (9) (1991 j. 
537-541. 

179 


